Abstract

For the bottom-up based stereolithography (SL) process, a separation process is required to detach the newly cured layer from the constrained surface in the fabrication process. Excessive separation force will cause damage to the built layers and the constrained surface. Different surface coatings, platform motions including tilting and sliding, and the utilization of oxygen-permeable films have been developed to address the separation-related problems. Among these approaches, the vibration-assisted (VA) separation method to reduce the separation force has limited study. The underlying mechanism of the VA separation-based method remains unexplored, and the best way to use VA separation in the bottom-up based SL process is still unclear. In this paper, a new VA separation design for the SL process is presented. A prototype system was built to study the VA separation mechanism. Experiments on the separation performance under different parameters, including vibration frequency, pre-stress level, and exposure area, were conducted. Based on the collected separation force data, an analytical model based on the mechanics of fatigue fracture was built. The separation behaviors related to different shape size and topology were also studied and compared. The results showed that the separation force in SL was significantly reduced using the VA separation-based method. Furthermore, the relationship between the separation force and the separation time conforms to the stress-based fatigue model. This study also provides insights on how to choose process parameters by considering the trade-offs between separation force and building efficiency.

References

1.
Yang
,
Y.
,
Song
,
X.
,
Li
,
X.
,
Chen
,
Z.
,
Zhou
,
C.
,
Zhou
,
Q.
, and
Chen
,
Y.
,
2018
, “
Recent Progress in Biomimetic Additive Manufacturing Technology: From Materials to Functional Structures
,”
Adv. Mater.
,
30
(
36
), p.
1706539
. 10.1002/adma.201706539
2.
Leung
,
Y.
,
Kwok
,
T.
,
Li
,
X.
,
Yang
,
Y.
,
Wang
,
C. C. L.
, and
Chen
,
Y.
,
2019
, “
Challenges and Status on Design and Computation for Emerging Additive Manufacturing Technologies
,”
ASME J. Comput. Inf. Sci. Eng.
,
19
(
2
), p.
021013
. 10.1115/1.4041913
3.
Zhou
,
C.
, and
Chen
,
Y.
,
2012
, “
Additive Manufacturing Based on Optimized Mask Video Projection for Improved Accuracy and Resolution
,”
J. Manuf. Process.
,
14
(
2
), pp.
107
118
. 10.1016/j.jmapro.2011.10.002
4.
Li
,
Y.
,
Mao
,
H.
,
Hu
,
P.
,
Hermes
,
M.
,
Lim
,
H.
,
Yoon
,
J.
,
Luhar
,
M.
,
Chen
,
Y.
, and
Wu
,
W.
,
2019
, “
Bio-inspired Functional Surfaces Enabled by Multiscale Stereolithography
,”
Adv. Mater. Technol.
,
4
(
5
), p.
1800638
. 10.1002/admt.201800638
5.
Pan
,
Y.
, and
Chen
,
Y.
,
2016
, “
Meniscus Process Optimization for Smooth Surface Fabrication in Stereolithography
,”
Addit. Manuf.
,
12
, pp.
321
333
.
6.
Gritsenko
,
D.
,
Yazdi
,
A. A.
,
Lin
,
Y.
,
Hovorka
,
V.
,
Pan
,
Y.
, and
Xu
,
J.
,
2017
, “
On Characterization of Separation Force for Resin Replenishment Enhancement in 3D Printing
,”
Addit. Manuf.
,
17
, pp.
151
156
.
7.
Mao
,
H.
,
Zhou
,
C.
, and
Chen
,
Y.
,
2016
, “
LISA: Linear Immersed Sweeping Accumulation
,”
J. Manuf. Process.
,
24
, pp.
406
415
. 10.1016/j.jmapro.2016.06.021
8.
Pan
,
Y.
,
He
,
H.
,
Xu
,
J.
, and
Feinerman
,
A.
,
2017
, “
Study of Separation Force in Constrained Surface Projection Stereolithography
,”
Rapid Prototyp. J.
,
23
(
2
), pp.
353
361
. 10.1108/RPJ-12-2015-0188
9.
Li
,
X.
, and
Chen
,
Y.
,
2017
, “
Micro-scale Feature Fabrication Using Immersed Surface Accumulation
,”
J. Manuf. Process.
,
28
, pp.
531
540
. 10.1016/j.jmapro.2017.04.022
10.
Song
,
X.
,
Zhang
,
Z.
,
Chen
,
Z.
, and
Chen
,
Y.
,
2016
, “
Porous Structure Fabrication Using a Stereolithography-Based Sugar Foaming Method
,”
ASME J. Manuf. Sci. Eng.
,
139
(
3
), p.
031015
. 10.1115/1.4034666
11.
Li
,
X.
,
Mao
,
H.
,
Pan
,
Y.
, and
Chen
,
Y.
,
2019
, “
Mask Video Projection Based Stereolithography With Continuous Resin Flow to Build Digital Models in Minutes
,”
ASME J. Manuf. Sci. Eng.
,
141
(
8
), p.
081007
. 10.1115/1.4043765
12.
Pan
,
Y.
,
Zhou
,
C.
, and
Chen
,
Y.
,
2012
, “
A Fast Mask Projection Stereolithography Process for Fabricating Digital Models in Minutes
,”
ASME J. Manuf. Sci. Eng.
,
134
(
5
), p.
051011
. 10.1115/1.4007465
13.
Jin
,
J.
,
Yang
,
J.
,
Mao
,
H.
, and
Chen
,
Y.
,
2018
, “
A Vibration-Assisted Method to Reduce Separation Force for Stereolithography
,”
J. Manuf. Process.
,
34
, pp.
793
801
. 10.1016/j.jmapro.2018.03.052
14.
Zhou
,
C.
,
Chen
,
Y.
,
Yang
,
Z.
, and
Khoshnevis
,
B.
,
2013
, “
Digital Material Fabrication Using Mask-Image-Projection-Based Stereolithography
,”
Rapid Prototyp. J.
,
19
(
3
), pp.
153
165
. 10.1108/13552541311312148
15.
Liravi
,
F.
,
Das
,
S.
, and
Zhou
,
C.
,
2014
, “
Separation Force Analysis Based on Cohesive Delamination Model for Bottom-up Stereolithography Using Finite Element Analysis
,”
25th Annual International Solid Freeform Fabrication Symposium
,
Austin, TX
,
Aug. 4–6
.
16.
Huang
,
Y. M.
, and
Jiang
,
C. P.
,
2005
, “
On-line Force Monitoring of Platform Ascending Rapid Prototyping System
,”
J. Mater. Process. Technol.
,
159
(
2
), pp.
257
264
. 10.1016/j.jmatprotec.2004.05.015
17.
Ye
,
H.
,
Venketeswaran
,
A.
,
Das
,
S.
, and
Zhou
,
C.
,
2017
, “
Investigation of Separation Force for Constrained-Surface Stereolithography Process From Mechanics Perspective
,”
Rapid Prototyp. J.
,
23
(
4
), pp.
696
710
. 10.1108/RPJ-06-2016-0091
18.
Dendukuri
,
D.
,
Pregibon
,
D. C.
,
Collins
,
J.
,
Hatton
,
T. A.
, and
Doyle
,
P. S.
,
2006
, “
Continuous-Flow Lithography for High-Throughput Microparticle Synthesis
,”
Nat. Mater.
,
5
(
5
), pp.
365
369
. 10.1038/nmat1617
19.
Tumbleston
,
J. R.
,
Shirvanyants
,
D.
,
Ermoshkin
,
N.
,
Janusziewicz
,
R.
,
Johnson
,
A. R.
,
Kelly
,
D.
,
Chen
,
K.
,
Pinschmidt
,
R.
,
Rolland
,
J. P.
,
Ermoshkin
,
A.
, and
Samulski
,
E. T.
,
2015
, “
Continuous Liquid Interface Production of 3D Objects
,”
Science
,
347
(
6228
), pp.
1349
1352
. 10.1126/science.aaa2397
20.
Wang
,
J. C.
,
Ruilova
,
M.
, and
Lin
,
Y. H.
,
2017
, “
The Development of an Active Separation Method for Bottom-Up Stereolithography System
,”
2017 IEEE/SICE International Symposium on System Integration (SII)
,
Taipei, Taiwan
,
Dec. 11–14
, IEEE, pp.
108
114
.
21.
Yang
,
S.
, and
Evans
,
J. R.
,
2003
, “
Computer Control of Powder Flow for Solid Freeforming by Acoustic Modulation
,”
Powder Technol.
,
133
(
1–3
), pp.
251
254
. 10.1016/S0032-5910(03)00088-3
22.
Yang
,
S.
,
Mohebi
,
M. M.
, and
Evans
,
J. R. G.
,
2008
, “
A Novel Solid Freeforming Method Using Simultaneous Part and Mould Construction
,”
Rapid Prototyp. J.
,
14
(
1
), pp.
35
43
. 10.1108/13552540810841544
23.
White
,
D.
,
2003
,
Ultrasonic Object Consolidation
, Solidica Inc., U.S. Patent 6,519,500.
24.
Sachs
,
E. M.
,
2000
,
Powder Dispensing Apparatus Using Vibration
, Massachusetts Institute of Technology, U.S. Patent 6,036,777.
25.
Cong
,
W.
, and
Ning
,
F.
,
2017
, “
A Fundamental Investigation on Ultrasonic Vibration-Assisted Laser Engineered Net Shaping of Stainless Steel
,”
Int. J. Mach. Tools Manuf.
,
121
, pp.
61
69
. 10.1016/j.ijmachtools.2017.04.008
26.
Kovalenko
,
I.
,
Garan
,
M.
,
Shynkarenko
,
A.
,
Zelený
,
P.
, and
Šafka
,
J.
,
2015
, “
Examining the relationship between forces during stereolithography 3D printing and geometric parameters of the model
,”
2015 International Conference on Mechanical Engineering and Electrical Systems
,
Singapore
,
Dec. 16–18
.
27.
Liravi
,
F.
,
Das
,
S.
, and
Zhou
,
C.
,
2015
, “
Separation Force Analysis and Prediction Based on Cohesive Element Model for Constrained-Surface Stereolithography Processes
,”
Comput.-Aided Des.
,
69
, pp.
134
142
. 10.1016/j.cad.2015.05.002
28.
Wu
,
X.
,
Lian
,
Q.
,
Li
,
D.
, and
Jin
,
Z.
,
2017
, “
Tilting Separation Analysis of Bottom-Up Mask Projection Stereolithography Based on Cohesive Zone Model
,”
J. Mater. Process. Technol.
,
243
, pp.
184
196
. 10.1016/j.jmatprotec.2016.12.016
29.
Dowling
,
N. E.
,
2012
,
Mechanical Behavior of Materials: Engineering Methods for Deformation, Fracture, and Fatigue
,
Pearson
,
Boston, MA
.
30.
Pascoe
,
J. A.
,
Alderliesten
,
R. C.
, and
Benedictus
,
R.
,
2013
, “
Methods for the Prediction of Fatigue Delamination Growth in Composites and Adhesive Bonds—A Critical Review
,”
Eng. Fract. Mech.
,
112
, pp.
72
96
. 10.1016/j.engfracmech.2013.10.003
31.
Duggan
,
T. V.
, and
Byrne
,
J.
,
1977
,
Fatigue as a Design Criterion
,
Macmillan International Higher Education
,
London, UK
.
32.
Schwalbe
,
K. H.
,
1974
, “
Comparison of Several Fatigue Crack Propagation Laws With Experimental Results
,”
Eng. Fract. Mech.
,
6
(
2
), pp.
325
341
. 10.1016/0013-7944(74)90031-9
33.
Walker
,
K.
,
Pendleberry
,
S.
, and
McElwee
,
R.
,
1970
,
Effects of Environment and Complex Load History on Fatigue Life
,
ASTM International
,
Philadelphia, PA
.
34.
Xin
,
Q.
,
2013
,
Diesel Engine System Design
,
Woodhead Publishing Limited
,
Sawston, Cambridge, UK
, pp.
113
202
.
35.
Lin
,
Y. S.
, and
Yang
,
C. J.
,
2019
, “
Spring Assisting Mechanism for Enhancing the Separation Performance of Digital Light Process 3D Printers
,”
IEEE Access
,
7
, pp.
71718
71729
.
10.1109/access.2019.2920004
36.
Bae
,
K. H.
, and
Lee
,
S. B.
,
2011
, “
The Effect of Specimen Geometry on the Low Cycle Fatigue Life of Metallic Materials
,”
Mater. High Temp.
,
28
(
1
), pp.
33
39
. 10.3184/096034011X12982896521562
You do not currently have access to this content.