Abstract

Laser-based additive manufacturing (LBAM) provides unrivalled design freedom with the ability to manufacture complicated parts for a wide range of engineering applications. Melt pool is one of the most important signatures in LBAM and is indicative of process anomalies and part defects. High-speed thermal images of the melt pool captured during LBAM make it possible for in situ melt pool monitoring and porosity prediction. This paper aims to broaden current knowledge of the underlying relationship between process and porosity in LBAM and provide new possibilities for efficient and accurate porosity prediction. We present a deep learning-based data fusion method to predict porosity in LBAM parts by leveraging the measured melt pool thermal history and two newly created deep learning neural networks. A PyroNet, based on Convolutional Neural Networks, is developed to correlate in-process pyrometry images with layer-wise porosity; an IRNet, based on Long-term Recurrent Convolutional Networks, is developed to correlate sequential thermal images from an infrared camera with layer-wise porosity. Predictions from PyroNet and IRNet are fused at the decision-level to obtain a more accurate prediction of layer-wise porosity. The model fidelity is validated with LBAM Ti–6Al–4V thin-wall structure. This is the first work that manages to fuse pyrometer data and infrared camera data for metal additive manufacturing (AM). The case study results based on benchmark datasets show that our method can achieve high accuracy with relatively high efficiency, demonstrating the applicability of the method for in situ porosity detection in LBAM.

References

1.
Thompson
,
S. M.
,
Bian
,
L.
,
Shamsaei
,
N.
, and
Yadollahi
,
A.
,
2015
, “
An Overview of Direct Laser Deposition for Additive Manufacturing; Part I: Transport Phenomena, Modeling and Diagnostics
,”
Addit. Manuf.
,
8
, pp.
36
62
. 10.1016/j.addma.2015.07.001
2.
Yan
,
Z.
,
Liu
,
W.
,
Tang
,
Z.
,
Liu
,
X.
,
Zhang
,
N.
,
Li
,
M.
, and
Zhang
,
H.
,
2018
, “
Review on Thermal Analysis in Laser-Based Additive Manufacturing
,”
Opt. Laser Technol.
,
106
, pp.
427
441
. 10.1016/j.optlastec.2018.04.034
3.
Heigel
,
J. C.
,
Michaleris
,
P.
, and
Reutzel
,
E. W.
,
2015
, “
Thermo-Mechanical Model Development and Validation of Directed Energy Deposition Additive Manufacturing of Ti–6al–4v
,”
Addit. Manuf.
,
5
, pp.
9
19
. 10.1016/j.addma.2014.10.003
4.
Guo
,
Q.
,
Zhao
,
C.
,
Qu
,
M.
,
Xiong
,
L.
,
Escano
,
L. I.
,
Mohammad
,
S.
,
Hojjatzadeh
,
H.
,
Parab
,
N. D.
,
Fezzaa
,
K
,
Everhart
,
W.
,
Sun
,
T.
, and
Chen
,
L.
,
2019
, “
In-Situ Characterization and Quantification of Melt Pool Variation Under Constant Input Energy Density in Laser Powder Bed Fusion Additive Manufacturing Process
,”
Addit. Manuf.
,
28
, pp.
600
609
. 10.1016/j.addma.2019.04.021
5.
Jafari-Marandi
,
R.
,
Khanzadeh
,
M.
,
Tian
,
W.
,
Smith
,
B.
, and
Bian
,
L.
,
2019
, “
From In-situ Monitoring Toward High-Throughput Process Control: Cost-Driven Decision-Making Framework for Laser-Based Additive Manufacturing
,”
J. Manuf. Syst.
,
51
, pp.
29
41
. 10.1016/j.jmsy.2019.02.005
6.
Romano
,
J.
,
Ladani
,
L.
, and
Sadowski
,
M.
,
2015
, “
Thermal Modeling of Laser Based Additive Manufacturing Processes Within Common Materials
,”
Procedia Manuf.
,
1
, pp.
238
250
. 10.1016/j.promfg.2015.09.012
7.
Song
,
J.
,
Wu
,
W. H.
,
He
,
B. B.
,
Ni
,
X. Q.
,
Long
,
Q. L.
,
Lu
,
L.
,
Wang
,
T.
,
Zhu
,
G. L.
, and
Zhang
,
L.
,
2018
, “
Effect of Processing Parameters on the Size of Molten Pool in Gh3536 Alloy During Selective Laser Melting
,”
IOP Conference Series: Materials Science and Engineering
,
Nanchang, China
,
May 25–27
, p.
012090
.
8.
Zhuang
,
J.-R.
,
Lee
,
Y.-T.
,
Hsieh
,
W.-H.
, and
Yang
,
A.-S.
,
2018
, “
Determination of Melt Pool Dimensions Using Doe-Fem and Rsm With Process Window During Slm of Ti6al4v Powder
,”
Opt. Laser Technol.
,
103
, pp.
59
76
. 10.1016/j.optlastec.2018.01.013
9.
Tian
,
H.
,
Chen
,
X.
,
Yan
,
Z.
,
Zhi
,
X.
,
Yang
,
Q.
, and
Yuan
,
Z.
,
2019
, “
Finite-Element Simulation of Melt Pool Geometry and Dilution Ratio During Laser Cladding
,”
Appl. Phys. A
,
125
(
7
), p.
485
. 10.1007/s00339-019-2772-9
10.
Khanzadeh
,
M.
,
Tian
,
W.
,
Yadollahi
,
A.
,
Doude
,
H. R.
,
Tschopp
,
M. A.
, and
Bian
,
L.
,
2018
, “
Dual Process Monitoring of Metal-Based Additive Manufacturing Using Tensor Decomposition of Thermal Image Streams
,”
Addit. Manuf.
,
23
, pp.
443
456
. 10.1016/j.addma.2018.08.014
11.
Mahmoudi
,
M.
,
Ezzat
,
A. A.
, and
Elwany
,
A.
,
2019
, “
Layerwise Anomaly Detection in Laser Powder-Bed Fusion Metal Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
141
(
3
), p.
031002
. 10.1115/1.4042108
12.
Seifi
,
S. H.
,
Tian
,
W.
,
Doude
,
H.
,
Tschopp
,
M. A.
, and
Bian
,
L.
,
2019
, “
Layer-Wise Modeling and Anomaly Detection for Laser-Based Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
141
(
8
), p.
081013
. 10.1115/1.4043898
13.
Khanzadeh
,
M.
,
Chowdhury
,
S.
,
Bian
,
L.
, and
Tschopp
,
M. A.
,
2017
, “
A Methodology for Predicting Porosity From Thermal Imaging of Melt Pools in Additive Manufacturing Thin Wall Sections
,”
ASME 2017 12th International Manufacturing Science and Engineering Conference Collocated With the JSME/ASME 2017 6th International Conference on Materials and Processing
,
Los Angeles, CA
,
June 4–8
, p. V002T01A044.
14.
Khanzadeh
,
M.
,
Chowdhury
,
S.
,
Marufuzzaman
,
M.
,
Tschopp
,
M. A.
, and
Bian
,
L.
,
2018
, “
Porosity Prediction: Supervised-Learning of Thermal History for Direct Laser Deposition
,”
J. Manuf. Syst.
,
47
, pp.
69
82
. 10.1016/j.jmsy.2018.04.001
15.
Khanzadeh
,
M.
,
Chowdhury
,
S.
,
Tschopp
,
M. A.
,
Doude
,
H. R.
,
Marufuzzaman
,
M.
, and
Bian
,
L.
,
2019
, “
In-Situ Monitoring of Melt Pool Images for Porosity Prediction in Directed Energy Deposition Processes
,”
IISE Trans.
,
51
(
5
), pp.
437
455
. 10.1080/24725854.2017.1417656
16.
Scime
,
L.
, and
Beuth
,
J.
,
2019
, “
Using Machine Learning to Identify in-Situ Melt Pool Signatures Indicative of Flaw Formation in a Laser Powder bed Fusion Additive Manufacturing Process
,”
Addit. Manuf.
,
25
, pp.
151
165
. 10.1016/j.addma.2018.11.010
17.
Mitchell
,
J. A.
,
Ivanoff
,
T. A.
,
Dagel
,
D.
,
Madison
,
J. D.
, and
Jared
,
B.
,
2020
, “
Linking Pyrometry to Porosity in Additively Manufactured Metals
,”
Addit. Manuf.
,
31
, p.
100946
. 10.1016/j.addma.2019.100946
18.
Dey
,
N.
,
Ashour
,
A. S.
, and
Borra
,
S.
,
2017
,
Classification in BioApps: Automation of Decision Making
,
Springer
,
New York
.
19.
LeCun
,
Y.
,
Bengio
,
Y.
, and
Hinton
,
G.
,
2015
, “
Deep Learning
,”
Nature
,
521
(
7553
), pp.
436
444
. 10.1038/nature14539
20.
Hinton
,
G.
,
Deng
,
L.
,
Yu
,
D.
,
Dahl
,
G. E.
,
Mohamed
,
A.-r.
,
Jaitly
,
N.
,
Senior
,
A.
,
Vanhoucke
,
V.
,
Nguyen
,
P.
,
Sainath
,
T.
, and
Kingsbury
,
B.
,
2012
, “
Deep Neural Networks for Acoustic Modeling in Speech Recognition: The Shared Views of Four Research Groups
,”
IEEE Signal Process. Mag.
,
29
(
6
), pp.
82
97
. 10.1109/MSP.2012.2205597
21.
Krizhevsky
,
A.
,
Sutskever
,
I.
, and
Hinton
,
G. E.
,
2017
, “
Imagenet Classification With Deep Convolutional Neural Networks
,”
Commun. ACM
,
60
(
6
), pp.
84
90
. 10.1145/3065386
22.
Weimer
,
D.
,
Scholz-Reiter
,
B.
, and
Shpitalni
,
M.
,
2016
, “
Design of Deep Convolutional Neural Network Architectures for Automated Feature Extraction in Industrial Inspection
,”
CIRP Ann.
,
65
(
1
), pp.
417
420
. 10.1016/j.cirp.2016.04.072
23.
Wang
,
P.
,
Yan
,
R.
, and
Gao
,
R. X.
,
2017
, “
Virtualization and Deep Recognition for System Fault Classification
,”
J. Manuf. Syst.
,
44
(
2
), pp.
310
316
. 10.1016/j.jmsy.2017.04.012
24.
Wang
,
P.
,
Gao
,
R. X.
, and
Yan
,
R.
,
2017
, “
A Deep Learning-Based Approach to Material Removal Rate Prediction in Polishing
,”
CIRP Ann.
,
66
(
1
), pp.
429
432
. 10.1016/j.cirp.2017.04.013
25.
Wang
,
J.
,
Ma
,
Y.
,
Zhang
,
L.
,
Gao
,
R. X.
, and
Wu
,
D.
,
2018
, “
Deep Learning for Smart Manufacturing: Methods and Applications
,”
J. Manuf. Syst.
,
48
(
C
), pp.
144
156
. 10.1016/j.jmsy.2018.01.003
26.
Williams
,
J.
,
Dryburgh
,
P.
,
Clare
,
A.
,
Rao
,
P.
, and
Samal
,
A.
,
2018
, “
Defect Detection and Monitoring in Metal Additive Manufactured Parts Through Deep Learning of Spatially Resolved Acoustic Spectroscopy Signals
,”
Smart Sust. Manuf. Sys.
,
2
(
1
), pp.
204
226
. 10.1520/SSMS20180035
27.
Ye
,
D.
,
Hong
,
G. S.
,
Zhang
,
Y.
,
Zhu
,
K.
, and
Fuh
,
J. Y. H.
,
2018
, “
Defect Detection in Selective Laser Melting Technology by Acoustic Signals With Deep Belief Networks
,”
Int. J. Adv. Manuf. Technol.
,
96
(
5–8
), pp.
2791
2801
. 10.1007/s00170-018-1728-0
28.
Scime
,
L.
, and
Beuth
,
J.
,
2018
, “
A Multi-scale Convolutional Neural Network for Autonomous Anomaly Detection and Classification in a Laser Powder Bed Fusion Additive Manufacturing Process
,”
Addit. Manuf.
,
24
, pp.
273
286
. 10.1016/j.addma.2018.09.034
29.
Steed
,
C. A.
,
Halsey
,
W.
,
Dehoff
,
R.
,
Yoder
,
S. L.
,
Paquit
,
V.
, and
Powers
,
S.
,
2017
, “
Falcon: Visual Analysis of Large, Irregularly Sampled, and Multivariate Time Series Data in Additive Manufacturing
,”
Comput. Graph.
,
63
, pp.
50
64
. 10.1016/j.cag.2017.02.005
30.
Donahue
,
J.
,
Hendricks
,
L. A.
,
Guadarrama
,
S.
,
Rohrbach
,
M.
,
Venugopalan
,
S.
,
Saenko
,
K.
, and
Darrell
,
T.
,
2015
, “
Long-Term Recurrent Convolutional Networks for Visual Recognition and Description
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
,
Boston, MA
,
June 7–12
, pp.
2625
2634
.
31.
Marshall
,
G. J.
,
Thompson
,
S. M.
, and
Shamsaei
,
N.
,
2016
, “
Data Indicating Temperature Response of Ti–6Al–4v Thin-Walled Structure During Its Additive Manufacture Via Laser Engineered Net Shaping
,”
Data Brief
,
7
, pp.
697
703
. 10.1016/j.dib.2016.02.084
32.
Faber
,
N. M.
, and
Rajkó
,
R.
,
2007
, “
How to Avoid Over-Fitting in Multivariate Calibration—The Conventional Validation Approach and an Alternative
,”
Anal. Chim. Acta
,
595
(
1–2
), pp.
98
106
. 10.1016/j.aca.2007.05.030
33.
Rubinstein
,
R. Y.
, and
Kroese
,
D. P.
,
2016
,
Simulation and the Monte Carlo Method
, Vol.
10
,
John Wiley & Sons
,
Hoboken, NJ
.
34.
Simonyan
,
K.
, and
Zisserman
,
A.
,
2014
, “
Very Deep Convolutional Networks for Large-Scale Image Recognition
,”
arXiv preprint arXiv: 1409.15560
.
35.
Sugata
,
T. L. I.
, and
Yang
,
C. K.
,
2017
, “
Leaf App: Leaf Recognition With Deep Convolutional Neural Networks
,”
Materials Science and Engineering Conference Series
,
Bali, Indonesia
,
Aug. 24–25
, p.
012004
.
36.
Romanuke
,
V. V.
,
2017
, “
Appropriate Number and Allocation of Relus in Convolutional Neural Networks
,”
Наукові вісті Національного технічного університету України Київський політехнічний інститут
, (
1
), pp.
69
78
. 10.20535/2307-5651.15.2018.135937
37.
Xingjian
,
S.
,
Chen
,
Z.
,
Wang
,
H.
,
Yeung
,
D.-Y.
,
Wong
,
W.-K.
, and
Woo
,
W.-c.
,
2015
, “Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting,”
Advances in Neural Information Processing Systems 28 (NIPS 2015)
, Vol.
28
,
C.
Cortes
,
N.
Lawrence
,
D.
Lee
,
M.
Sugiyama
, and
R.
Garnett
, eds.,
Curran Associates, Inc.
,
Red Hook, NY
, pp.
802
810
.
38.
Nesterov
,
Y.
,
1983
, “
A Method of Solving a Convex Programming Problem With Convergence Rate O(1/k2)
,”
Sov. Math. Doklady
,
27
(
2
), pp.
372
376
.
You do not currently have access to this content.