Abstract

This paper presents a novel thickness profile measuring system that measures double-sided thin pipe wall surfaces in a non-contact, continuous, cosine error-free, and fast manner. The surface metrology tool path was developed to align the displacement sensors always normal to the double-sided surfaces to remove cosine error. A pair of capacitive-type sensors that were placed on the rotary and linear axes simultaneously scans the inner and outer surfaces of thin walls. Because the rotational error of the rotary axis can severely affect the accuracy in thickness profile measurement, such error was initially characterized by a reversal method. It was compensated for along the rotational direction while measuring the measurement target. Two measurement targets (circular and elliptical metal pipe-type thin walls) were prepared to validate the developed measurement method and system. Not only inner and outer surface profiles but also thin-wall thickness profiles were measured simultaneously. Based on the output data, the circularity and wall thickness variation were calculated. The thickness profile results showed a good agreement with those obtained by a contact-type micrometer (1-µm resolution) at every 6-deg interval. The uncertainty budget for this measuring system with metrology tool path planning was estimated at approximately 1.4 µm.

References

References
1.
Monchalin
,
J. P.
,
Blouin
,
A.
, and
Padioleau
,
C.
,
1999
, Method and Apparatus for Mapping the Wall Thickness of Tubes During Production, US607839A.
2.
Monchalin
,
J. P.
,
Blouin
,
A.
, and
Padioleau
,
C.
,
1999
, Apparatus for mapping the wall thickness of a tube or other object having movement in two directions, BR0009831A.
3.
Yi
,
W.-G.
,
Lee
,
M.-R.
,
Lee
,
J.-H.
, and
Lee
,
S.-H.
,
2006
, “
A Study on the Ultrasonic Thickness Measurement of Wall Thinned Pipe in Nuclear Power Plants
,”
Paper Presented at the 12th Asia-Pacific Conference on NDT
,
Auckland, New Zealand
,
Nov. 5–10
4.
Belenkij
,
J.
,
Müller
,
C.
, and
Scharmach
,
M.
,
2000
, “
A new Method for Radiographic Image Evaluation for Pipe Wall Thickness Measurement
,”
15th World Conference on Nondestructive Testing
,
Roma, Italy
,
Oct. 15–21
.
5.
Mao
,
X.
, and
Lei
,
Y.
,
2016
, “
Thickness Measurement of Metal Pipe Using Swept-Frequency Eddy Current Testing
,”
NDT&E Int.
,
78
, pp.
10
19
. 10.1016/j.ndteint.2015.11.001
6.
Kim
,
S.-W.
, and
Kim
,
G.-H.
,
1999
, “
Thickness-Profile Measurement of Transparent Thin-Film Layers by White-Light Scanning Interferometry
,”
Appl. Opt.
,
38
(
28
), pp.
5968
5973
. 10.1364/AO.38.005968
7.
Ghim
,
Y.-S.
, and
Kim
,
S.-W.
,
2006
, “
Thin-Film Thickness Profile and Its Refractive Index Measurements by Dispersive White-Light Interferometry
,”
Opt. Express
,
14
(
24
), pp.
11885
11891
. 10.1364/OE.14.011885
8.
Xie
,
Z.
,
Tang
,
Y.
,
Zhou
,
Y.
, and
Deng
,
Q.
,
2018
, “
Surface and Thickness Measurement of Transparent Thin-Film Layers Utilizing Modulation-Based Structured-Illumination Microscopy
,”
Opt. Express
,
26
(
3
), pp.
2944
2953
. 10.1364/OE.26.002944
9.
Jellison
,
G.
, Jr.
,
Modine
,
F.
,
Doshi
,
P.
, and
Rohatgi
,
A.
,
1998
, “
Spectroscopic Ellipsometry Characterization of Thin-Film Silicon Nitride
,”
Thin Solid Films
,
313
, pp.
193
197
. 10.1016/S0040-6090(97)00816-X
10.
Hassani
,
K.
,
Ashrafganjoie
,
M.
, and
Tavassoly
,
M. T.
,
2016
, “
Application of White Light Fresnel Diffractometry to Film Thickness Measurement
,”
Appl. Opt.
,
55
(
7
), pp.
1803
1807
. 10.1364/AO.55.001803
11.
Tavassoly
,
M. T.
,
Haghighi
,
I. M.
, and
Hassani
,
K.
,
2009
, “
Application of Fresnel Diffraction From a Phase Step to the Measurement of Film Thickness
,”
Appl. Opt.
,
48
(
29
), pp.
5497
5501
. 10.1364/AO.48.005497
12.
Guo
,
X.
,
Han
,
J.
, and
Lee
,
C.
,
2020
, “
Cosine Error Elimination Method for One-Dimensional Convex and Concave Surface Profile Measurements
,”
ASME J. Manuf. Sci. Eng.
,
142
(
4
), p.
041001
.https:dx.doi.org/10.1115/1.4046078
13.
Leach
,
R.
,
2014
,
Fundamental Principles of Engineering Nanometrology
,
Elsevier
,
New York
.
14.
Ye
,
Y.
,
Zhang
,
C.
,
He
,
C.
,
Wang
,
X.
,
Huang
,
J.
, and
Deng
,
J.
,
2020
, “
A Review on Applications of Capacitive Displacement Sensing for Capacitive Proximity Sensor
,”
IEEE Access
,
8
, pp.
45325
45342
. 10.1109/ACCESS.2020.2977716
15.
Barile
,
G.
,
Ferri
,
G.
,
Parente
,
F. R.
,
Stornelli
,
V.
,
Sisinni
,
E.
,
Depari
,
A.
, and
Flammini
,
A.
,
2018
, “
A CMOS Full-Range Linear Integrated Interface for Differential Capacitive Sensor Readout
,”
Sens. Actuators, A
,
281
, pp.
130
140
. 10.1016/j.sna.2018.08.033
16.
Arshad
,
A.
,
Khan
,
S.
,
Zahirul Alam
,
A. H. M.
,
Abdul Kadir
,
K.
,
Tasnim
,
R.
, and
Fadzil Ismail
,
A.
,
2017
, “
A Capacitive Proximity Sensing Scheme for Human Motion Detection
,”
Proceedings of IEEE International Instrumentation and Measurement Technology Conference (I2MTC)
,
Turin, Italy
,
May 22–25
, pp.
1
5
.
17.
Mathiyazhagan
,
R.
,
Sampathkumar
,
S.
, and
Muthuramalingam
,
T.
,
2019
, “
Prediction Modeling of Surface Roughness Using Capacitive Sensing Technique in Machining Process
,”
IEEE Sensors J.
,
19
(
21
), pp.
9997
10002
. 10.1109/JSEN.2019.2927174
18.
Braun
,
A.
,
Wichert
,
R.
,
Kuijper
,
A.
, and
Fellner
,
D. W.
,
2015
, “
Capacitive Prox-Imity Sensing in Smart Environments
,”
J. Ambient Intell. Smart Environ.
,
7
(
4
), pp.
483
510
. 10.3233/AIS-150324
19.
Dehkhoda
,
F.
,
Frounchi
,
J.
, and
Veladi
,
H.
,
2010
, “
Capacitive Proximity Sensor Design Tool Based on Finite Element Analysis
,”
Sensor Rev.
,
30
(
4
), pp.
297
304
. 10.1108/02602281011072170
20.
Bryan
,
J.
,
1967
, “
Spindle Accuracy
,”
Am. Mach.
,
111
(
25
), pp.
149
164
.
21.
Donaldson
,
R. R.
,
1972
, “
A Simple Method for Separating Spindle Error From Test Ball Roundness Error
,”
CIRP
,
21
(
1
), pp.
125
126
.
22.
Cogorno
,
G. R.
,
2020
,
Geometric Dimensioning and Tolerancing for Mechanical Design, 3E. Chapter Form and Appendix
,
McGraw-Hill Education
,
New York
.
23.
Krulikowski
,
A.
,
2017
, Ultimate GD&T Pocket Guide,
SAE
, 2nd ed., SAE International, US, pp.
53
58
.
24.
Proffitt
,
D.
,
1982
, “
The Measurement of Circularity and Ellipticity on a Digital Grid
,”
Pattern Recogn.
,
15
(
5
), pp.
383
387
. 10.1016/0031-3203(82)90041-3
25.
Kopanja
,
L.
,
Žunić
,
D.
,
Lončar
,
B.
,
yergyek
,
S.
, and
Tadić
,
M.
,
2016
, “
Quantifying Shapes of Nanoparticles Using Modified Circularity and Ellipticity Measures
,”
Measurement
,
92
, pp.
252
263
. 10.1016/j.measurement.2016.06.021
26.
Buckrop
,
L. R.
,
1963
, “
Concentricity Determinations for Hollow Cylindrical Shapes Utilizing Resonant Energy
,”
Proc. Iowa Acad. Sci.
,
70
(
1
), pp.
391
393
.
27.
Smith
,
P. T.
,
Vallance
,
R. R.
, and
Marsh
,
E. R.
,
2005
, “
Correcting Capacitive Displacement Measurements in Metrology Applications With Cylindrical Artifacts
,”
Precis. Eng.
,
29
(
3
), pp.
324
335
. 10.1016/j.precisioneng.2004.11.010
28.
29.
Tan
,
B.
,
Mao
,
X.
,
Liu
,
H.
,
Li
,
B.
,
He
,
S.
,
Peng
,
F.
, and
Yin
,
L.
,
2014
, “
A Thermal Error Model for Large Machine Tools That Considers Environmental Thermal Hysteresis Effects
,”
Int. J. Mach. Tools Manuf.
,
82
, pp.
11
20
. 10.1016/j.ijmachtools.2014.03.002
You do not currently have access to this content.