Abstract

Laser-induced forward transfer (LIFT) is a well-established, versatile additive manufacturing technology for orifice-free printing of highly viscous solutions and suspensions. In order to improve the efficiency of point-wise LIFT printing, an optical scanner is integrated into the laser printing system to enable the formation of overlapping adjacent jets used for deposition. The objective of this study is to evaluate the ejection behavior and deposition performance under such conditions during LIFT printing for further improvement. The effects of the overlap of adjacent jets are investigated in terms of jet formation and material deposition processes, capturing the jet tilting phenomenon caused by the perturbance induced by previously formed jet(s). The feasibility of optical scanner-assisted LIFT printing of viscous metal-based ink suspension has been successfully demonstrated during conductive line printing with induced overlapping jets. Investigation of various overlap ratios of adjacent jets found that a 30% jet overlap and a 133 µs time interval between laser pulses are optimal, in terms of deposition quality and ejection stability, even when a tilted jet ejection is present for the laser and material system in this study. Furthermore, multilayer polygonal and interdigitated structures are successfully deposited under these identified printing conditions. With the inclusion of an optical scanner, LIFT printing efficiency for viscous inks can be improved as the usage of higher laser frequencies is enabled, providing a faster orifice-free laser printing methodology.

References

References
1.
Schiele
,
N. R.
,
Corr
,
D. T.
,
Huang
,
Y.
,
Raof
,
N. A.
,
Xie
,
Y.
, and
Chrisey
,
D. B.
,
2010
, “
Laser-Based Direct-Write Techniques for Cell Printing
,”
Biofabrication
,
2
(
3
), p.
032001
. 10.1088/1758-5082/2/3/032001
2.
Riggs
,
B. C.
,
Dias
,
A. D.
,
Schiele
,
N. R.
,
Cristescu
,
R.
,
Huang
,
Y.
,
Corr
,
D. T.
, and
Chrisey
,
D. B.
,
2011
, “
Matrix-Assisted Pulsed Laser Methods for Biofabrication
,”
MRS Bull.
,
36
(
12
), pp.
1043
1050
. 10.1557/mrs.2011.276
3.
Piqué
,
A.
,
Chrisey
,
D. B.
,
Auyeung
,
R. C. Y.
,
Fitz-Gerald
,
J.
,
Wu
,
H. D.
,
McGill
,
R. A.
,
Lakeou
,
S.
,
Wu
,
P. K.
,
Nguyen
,
V.
, and
Duignan
,
M.
,
1999
, “
A Novel Laser Transfer Process for Direct Writing of Electronic and Sensor Materials
,”
Appl. Phys. A: Mater. Sci. Process.
,
69
(
7
), pp.
279
284
. 10.1007/s003390051400
4.
Keriquel
,
V.
,
Oliveira
,
H.
,
Rémy
,
M.
,
Ziane
,
S.
,
Delmond
,
S.
,
Rousseau
,
B.
,
Rey
,
S.
,
Catros
,
S.
,
Amédée
,
J.
,
Guillemot
,
F.
, and
Fricain
,
J.-C.
,
2017
, “
In Situ Printing of Mesenchymal Stromal Cells, by Laser-Assisted Bioprinting, for in Vivo Bone Regeneration Applications
,”
Sci. Rep.
,
7
(
1
), pp.
1
10
. 10.1038/s41598-017-01914-x
5.
Yan
,
J.
,
Huang
,
Y.
, and
Chrisey
,
D. B.
,
2013
, “
Laser-Assisted Printing of Alginate Long Tubes and Annular Constructs
,”
Biofabrication
,
5
(
1
), p.
015002
. 10.1088/1758-5082/5/1/015002
6.
Xiong
,
R.
,
Zhang
,
Z.
,
Chai
,
W.
,
Huang
,
Y.
, and
Chrisey
,
D. B.
,
2015
, “
Freeform Drop-on-Demand Laser Printing of 3D Alginate and Cellular Constructs
,”
Biofabrication
,
7
(
4
), p.
045011
. 10.1088/1758-5090/7/4/045011
7.
Jiang
,
J.
,
Bao
,
B.
,
Li
,
M.
,
Sun
,
J.
,
Zhang
,
C.
,
Li
,
Y.
,
Li
,
F.
,
Yao
,
X.
, and
Song
,
Y.
,
2016
, “
Fabrication of Transparent Multilayer Circuits by Inkjet Printing
,”
Adv. Mater.
,
28
(
7
), pp.
1420
1426
. 10.1002/adma.201503682
8.
Sakurada
,
S.
,
Sole-Gras
,
M.
,
Christensen
,
K.
,
Wallace
,
D. B.
, and
Huang
,
Y.
,
2020
, “
Liquid-Absorbing System-Assisted Intersecting Jets Printing of Soft Structures From Reactive Biomaterials
,”
Addit. Manuf.
,
31
, p.
100934
. 10.1016/j.addma.2019.100934
9.
Zhang
,
Z.
,
Xiong
,
R.
,
Corr
,
D. T.
, and
Huang
,
Y.
,
2016
, “
Study of Impingement Types and Printing Quality During Laser Printing of Viscoelastic Alginate Solutions
,”
Langmuir
,
32
(
12
), pp.
3004
3014
. 10.1021/acs.langmuir.6b00220
10.
Jacobs
,
P. F.
,
1992
,
Rapid Prototyping & Manufacturing: Fundamentals of Stereolithography
,
Society of Manufacturing Engineers
,
Dearborn, MI
.
11.
Biver
,
E.
,
Rapp
,
L.
,
Alloncle
,
A. P.
,
Serra
,
P.
, and
Delaporte
,
P.
,
2014
, “
High-Speed Multi-Jets Printing Using Laser Forward Transfer: Time-Resolved Study of the Ejection Dynamics
,”
Opt. Express
,
22
(
14
), p.
17122
. 10.1364/OE.22.017122
12.
Biver
,
E.
,
Rapp
,
L.
,
Alloncle
,
A. P.
, and
Delaporte
,
P.
,
2014
, “
Multi-Jets Formation Using Laser Forward Transfer
,”
Appl. Surf. Sci.
,
302
, pp.
153
158
. 10.1016/j.apsusc.2013.10.042
13.
Puerto
,
D.
,
Biver
,
E.
,
Alloncle
,
A. P.
, and
Delaporte
,
P.
,
2016
, “
Single Step High-Speed Printing of Continuous Silver Lines by Laser-Induced Forward Transfer
,”
Appl. Surf. Sci.
,
374
, pp.
183
189
. 10.1016/j.apsusc.2015.11.017
14.
Brasz
,
C. F.
,
Yang
,
J. H.
, and
Arnold
,
C. B.
,
2014
, “
Tilting of Adjacent Laser-Induced Liquid Jets
,”
Microfluid. Nanofluid.
,
18
(
2
), pp.
185
197
. 10.1007/s10404-014-1429-4
15.
Zhang
,
Z.
,
Xiong
,
R.
,
Mei
,
R.
,
Huang
,
Y.
, and
Chrisey
,
D. B.
,
2015
, “
Time-Resolved Imaging Study of Jetting Dynamics During Laser Printing of Viscoelastic Alginate Solutions
,”
Langmuir
,
31
(
23
), pp.
6447
6456
. 10.1021/acs.langmuir.5b00919
16.
Brown
,
M. S.
,
Kattamis
,
N. T.
, and
Arnold
,
C. B.
,
2011
, “
Time-resolved Dynamics of Laser-Induced Micro-Jets From Thin Liquid Films
,”
Microfluid. Nanofluid.
,
11
(
2
), pp.
199
207
. 10.1007/s10404-011-0787-4
17.
Duocastella
,
M.
,
Fernández-Pradas
,
J. M.
,
Serra
,
P.
, and
Morenza
,
J. L.
,
2008
, “
Jet Formation in the Laser Forward Transfer of Liquids
,”
Appl. Phys. A: Mater. Sci. Process.
,
93
(
2
), pp.
453
456
. 10.1007/s00339-008-4781-y
18.
Makrygianni
,
M.
,
Kalpyris
,
I.
,
Boutopoulos
,
C.
, and
Zergioti
,
I.
,
2014
, “
Laser Induced Forward Transfer of Ag Nanoparticles Ink Deposition and Characterization
,”
Appl. Surf. Sci.
,
297
, pp.
40
44
. 10.1016/j.apsusc.2014.01.069
19.
Florian
,
C.
,
Caballero-Lucas
,
F.
,
Fernández-Pradas
,
J. M.
,
Artigas
,
R.
,
Ogier
,
S.
,
Karnakis
,
D.
, and
Serra
,
P.
,
2015
, “
Conductive Silver Ink Printing Through the Laser-Induced Forward Transfer Technique
,”
Appl. Surf. Sci.
,
336
, pp.
304
308
. 10.1016/j.apsusc.2014.12.100
20.
Visser
,
C. W.
,
Pohl
,
R.
,
Sun
,
C.
,
Römer
,
G. W.
,
Huis in ‘t Veld
,
B.
, and
Lohse
,
D.
,
2015
, “
Toward 3D Printing of Pure Metals by Laser-Induced Forward Transfer
,”
Adv. Mater.
,
27
(
27
), pp.
4087
4092
. 10.1002/adma.201501058
21.
Luo
,
J.
,
Pohl
,
R.
,
Qi
,
L.
,
Römer
,
G. W.
,
Sun
,
C.
,
Lohse
,
D.
, and
Visser
,
C. W.
,
2017
, “
Printing Functional 3D Microdevices by Laser-Induced Forward Transfer
,”
Small
,
13
(
9
), pp.
1
5
. 10.1002/smll.201602553
22.
Wang
,
J.
,
Auyeung
,
R. C.
,
Kim
,
H.
,
Charipar
,
N. A.
, and
Piqué
,
A.
,
2010
, “
Three-Dimensional Printing of Interconnects by Laser Direct-Write of Silver Nanopastes
,”
Adv. Mater.
,
22
(
40
), pp.
4462
4466
. 10.1002/adma.201001729
23.
Lee
,
H. H.
,
Chou
,
K. S.
, and
Huang
,
K. C.
,
2005
, “
Inkjet Printing of Nanosized Silver Colloids
,”
Nanotechnology
,
16
(
10
), pp.
2436
2441
. 10.1088/0957-4484/16/10/074
24.
He
,
B.
,
Yang
,
S.
,
Qin
,
Z.
,
Wen
,
B.
, and
Zhang
,
C.
,
2017
, “
The Roles of Wettability and Surface Tension in Droplet Formation During Inkjet Printing
,”
Sci. Rep.
,
7
(
1
), pp.
1
7
. 10.1038/s41598-016-0028-x
25.
Johnson
,
P. B.
, and
Christy
,
R. W.
,
1972
, “
Optical Constants of the Noble Metals
,”
Phys. Rev. B
,
6
(
12
), pp.
4370
4379
. 10.1103/PhysRevB.6.4370
26.
Otanicar
,
T. P.
,
Phelan
,
P. E.
, and
Golden
,
J. S.
,
2009
, “
Optical Properties of Liquids for Direct Absorption Solar Thermal Energy Systems
,”
Sol. Energy
,
83
(
7
), pp.
969
977
. 10.1016/j.solener.2008.12.009
27.
Theodorakos
,
I.
,
Kalaitzis
,
A.
,
Makrygianni
,
M.
,
Hatziapostolou
,
A.
,
Kabla
,
A.
,
Melamed
,
S.
,
de la Vega
,
F.
, and
Zergioti
,
I.
,
2019
, “
Laser-Induced Forward Transfer of High Viscous, Non-Newtonian Silver Nanoparticle Inks: Jet Dynamics and Temporal Evolution of the Printed Droplet Study
,”
Adv. Eng. Mater.
,
21
(
10
), p.
1900605
. 10.1002/adem.201900605
28.
Boutopoulos
,
C.
,
Kalpyris
,
I.
,
Serpetzoglou
,
E.
, and
Zergioti
,
I.
,
2014
, “
Laser-Induced Forward Transfer of Silver Nanoparticle ink: Time-Resolved Imaging of the Jetting Dynamics and Correlation with the Printing Quality
,”
Microfluid. Nanofluid.
,
16
(
3
), pp.
493
500
. 10.1007/s10404-013-1248-z
29.
Han
,
B.
,
Yang
,
B.
,
Shen
,
Z. H.
,
Lu
,
J.
, and
Ni
,
X. W.
,
2010
, “
Numerical Investigation of the Influences of Liquid Viscosity, Surface Tension and Initial Bubble Gas Content on the Dynamic Properties of a Laser-Induced Cavitation Bubble
,”
Lasers Eng.
,
19
(
5–6
), pp.
307
316
.
30.
Zacharatos
,
F.
,
Theodorakos
,
I.
,
Karvounis
,
P.
,
Tuohy
,
S.
,
Braz
,
N.
,
Melamed
,
S.
,
Kabla
,
A.
,
De la Vega
,
F.
,
Andritsos
,
K.
,
Hatziapostolou
,
A.
, and
Karnakis
,
D.
,
2018
, “
Selective Laser Sintering of Laser Printed Ag Nanoparticle Micropatterns at High Repetition Rates
,”
Materials
,
11
(
11
), pp.
1
21
. 10.3390/ma11112142
31.
Wang
,
W.
,
Li
,
G.
, and
Huang
,
Y.
,
2009
, “
Modeling of Bubble Expansion-Induced Cell Mechanical Profile in Laser-Assisted Cell Direct Writing
,”
ASME J. Manuf. Sci. Eng.
,
131
(
5
), p.
051013
. 10.1115/1.4000101
32.
Xiong
,
R.
,
Zhang
,
Z.
,
Shen
,
J.
,
Lin
,
Y.
,
Huang
,
Y.
, and
Chrisey
,
D. B.
,
2015
, “
Bubble Formation Modeling During Laser Direct Writing of Glycerol Solutions
,”
J. Micro Nano-Manuf.
,
3
(
1
), pp.
1
7
. 10.1115/1.4029264
33.
Mikšys
,
J.
,
Arutinov
,
G.
, and
Römer
,
G. R. B. E.
,
2019
, “
Pico- to Nanosecond Pulsed Laser-Induced Forward Transfer (LIFT) of Silver Nanoparticle Inks: A Comparative Study
,”
Appl. Phys. A: Mater. Sci. Process.
,
125
(
12
), pp.
1
11
. 10.1007/s00339-019-3085-8
34.
Brown
,
M. S.
,
Brasz
,
C. F.
,
Ventikos
,
Y.
, and
Arnold
,
C. B.
,
2012
, “
Impulsively Actuated Jets From Thin Liquid Films for High-Resolution Printing Applications
,”
J. Fluid Mech.
,
709
, pp.
341
370
. 10.1017/jfm.2012.337
35.
Unger
,
C.
,
Gruene
,
M.
,
Koch
,
L.
,
Koch
,
J.
, and
Chichkov
,
B. N.
,
2011
, “
Time-Resolved Imaging of Hydrogel Printing via Laser-Induced Forward Transfer
,”
Appl. Phys. A
,
103
(
2
), pp.
271
277
. 10.1007/s00339-010-6030-4
You do not currently have access to this content.