Abstract

Magnetically assisted resistance spot welding (MA-RSW), which uses a pair of mutually repulsive ring-shaped axially magnetized magnets, has been demonstrated to have significant effect on weld quality of high strength steels and light metals. However, in manufacturing of metro car bodies, single-sided resistance spot welding processes is frequently adopted to achieve better surface quality, which poses a big challenge to the traditional double-sided MA-RSW apparatus. In this study, single-sided MA-RSW apparatus with four arc-shaped radially magnetized permanent magnets was developed to adapt the demand of the single-sided RSW process, and 1.5 + 2.5 mm austenitic stainless steels (ASSs) are used to evaluate its effectiveness in terms of weld quality and surface indentation. Meanwhile, a 3D finite element model taking three types of MA-RSW apparatus into account was created to reveal the improvement mechanism of the single-sided MA-RSW apparatus. The results showed that the novel single-sided MA-RSW apparatus can produce stronger radial magnetic field in effective welding region and thus provide a great potential and promotion effect to the weld quality in terms of macro-morphology, surface indentation, microstructure, microhardness, and mechanical properties.

References

References
1.
Peasura
,
P.
,
2011
, “
Effect of Resistance Spot Welding Parameters on the Austenitic Stainless Steel 304 Grade by Using 23 Factorial Design
,”
Adv. Mater. Res.
,
216
, pp.
666
670
. 10.4028/WWW.scientific.net/AMR.216.666
2.
Marashi
,
P.
,
Pouranvari
,
M.
,
Amirabdollahian
,
S.
,
Abedi
,
A.
, and
Goodarzi
,
M.
,
2008
, “
Microstructure and Failure Behavior of Dissimilar Resistance Spot Welds Between Low Carbon Galvanized and Austenitic Stainless Steels
,”
Mater. Sci. Eng., A
,
480
(
1
), pp.
175
180
. 10.1016/j.msea.2007.07.007
3.
Liu
,
W.
,
Fan
,
H.
,
Guo
,
X.
,
Huang
,
Z.
, and
Han
,
X.
,
2016
, “
Mechanical Properties of Resistance Spot Welded Components of High Strength Austenitic Stainless Steel
,”
J. Mater. Sci. Technol.
,
32
(
6
), pp.
561
565
. 10.1016/j.jmst.2015.11.023
4.
Kianersi
,
D.
,
Mostafaei
,
A.
, and
Amadeh
,
A.
,
2014
, “
Resistance Spot Welding Joints of AISI 316L Austenitic Stainless Steel Sheets: Phase Transformations, Mechanical Properties and Microstructure Characterizations
,”
Mater. Des.
,
61
, pp.
251
263
. 10.1016/j.matdes.2014.04.075
5.
Mimer
,
M.
,
Svensson
,
L. E.
, and
Johansson
,
R.
,
2004
, “
Process Adjustments to Improve Fracture Behaviour in Resistance Spot Welds of EHSS and UHSS
,”
Weld. World
,
48
(
3–4
), pp.
14
18
. 10.1007/BF03266421
6.
Hernandez
,
B. V.
,
Kuntz
,
M. L.
,
Khan
,
M. I.
, and
Zhou
,
Y.
,
2008
, “
Influence of Microstructure and Weld Size on the Mechanical Behaviour of Dissimilar AHSS Resistance Spot Welds
,”
Sci. Technol. Weld. Joining
,
13
(
8
), pp.
769
776
. 10.1179/136217108X325470
7.
Q/SF 65-071
,
2015
,
General Standard for Stainless Steel RSW of Railway Vehicles
.
8.
Jones
,
L. A.
,
Eagar
,
T. W.
, and
Lang
,
J. H.
,
1998
, “
Magnetic Forces Acting on Molten Drops in Gas Metal Arc Welding
,”
J. Phys. D: Appl. Phys.
,
31
(
1
), pp.
93
106
. 10.1088/0022-3727/31/1/013
9.
Luo
,
J.
,
Luo
,
Q.
,
Lin
,
Y. H.
, and
Xue
,
J.
,
2003
, “
A New Approach for Fluid Flow Model in Gas Tungsten Arc Weld Pool Using Longitudinal Electromagnetic Control
,”
Weld. J.
,
82
(
8
), pp.
202
206
.
10.
Yang
,
F. Z.
,
Wu
,
C. S.
, and
Gao
,
J. Q.
,
2014
, “
Suppressing of Humping Bead Using an External Magnetic Field in High-Speed Gas Metal Arc Welding
,”
China Weld.
,
23
(
002
), pp.
22
28
.
11.
Popov
,
V. A.
,
1993
, “
Effect of the Magnetic Field on the Formation of the Joint in Resistance Spot Welding
,”
Weld. Int.
,
7
(
11
), pp.
905
907
. 10.1080/09507119309548515
12.
Shen
,
Q.
,
Li
,
Y. B.
,
Lin
,
Z. Q.
, and
Chen
,
G. L.
,
2011
, “
Impact of External Magnetic Field on Weld Quality of Resistance Spot Welding
,”
ASME J. Manuf. Sci. Eng.
,
133
(
5
), p.
051001
. 10.1115/1.4004794
13.
Li
,
Y. B.
,
Shen
,
Q.
,
Lin
,
Z.
, and
Hu
,
S. J.
,
2011
, “
Quality Improvement in Resistance Spot Weld of Advanced High Strength Steel Using External Magnetic Field
,”
Sci. Technol. Weld. Joining
,
16
(
5
), pp.
465
469
. 10.1179/1362171811Y.0000000002
14.
Li
,
Y. B.
,
Y
,
L. I.
,
Shen
,
T.
,
& Lin
,
Q.
, and
Q
,
Z.
,
2013
, “
Magnetically Assisted Resistance Spot Welding of Dual-Phase Steel
,”
Weld. J.
,
92
(
4
), pp.
124
132
.
15.
Li
,
Y. B.
,
Zhang
,
Q. X.
,
Qi
,
L.
, and
David
,
S. A.
,
2018
, “
Improving Austenitic Stainless Steel Resistance Spot Weld Quality Using External Magnetic Field
,”
Sci. Technol. Weld. Joining
,
23
(
7
), pp.
619
627
. 10.1080/13621718.2018.1443997
16.
Huang
,
M.
,
Zhang
,
Q.
,
Qi
,
L.
,
Deng
,
L.
, and
Li
,
Y.
,
2020
, “
Effect of External Magnetic Field on Resistance Spot Welding of Aluminum Alloy AA6061-T6
,”
J. Manuf. Process.
,
50
, pp.
456
466
. 10.1016/j.jmapro.2020.01.005
17.
Li
,
Y.
,
Luo
,
Z.
,
Yan
,
F.
,
Duan
,
R.
, and
Yao
,
Q.
,
2014
, “
Effect of External Magnetic Field on Resistance Spot Welds of Aluminum Alloy
,”
Mater. Des.
,
56
(
56
), pp.
1025
1033
. 10.1016/j.matdes.2013.12.005
18.
Yao
,
Q.
,
Luo
,
Z.
,
Li
,
Y.
,
Yan
,
F.
, and
Duan
,
R.
,
2014
, “
Effect of Electromagnetic Stirring on the Microstructures and Mechanical Properties of Magnesium Alloy Resistance Spot Weld
,”
Mater. Des.
,
63
, pp.
200
207
. 10.1016/j.matdes.2014.06.004
19.
Li
,
Y.
,
Zhang
,
Y.
,
Bi
,
J.
, and
Luo
,
Z.
,
2015
, “
Impact of Electromagnetic Stirring Upon Weld Quality of Al/Ti Dissimilar Materials Resistance Spot Welding
,”
Mater. Des.
,
83
, pp.
577
586
. 10.1016/j.matdes.2015.06.042
20.
Li
,
Y. B.
,
Lin
,
Z. Q.
,
Hu
,
S. J.
, and
Chen
,
G. L.
,
2007
, “
Numerical Analysis of Magnetic Fluid Dynamics Behaviors During Resistance Spot Welding
,”
J. Appl. Phys.
,
101
(
5
).10.1063/1.2472279
21.
Qi
,
L.
,
Li
,
F. Z.
,
Chen
,
R. M.
,
Zhang
,
Q. X.
, and
Li
,
Y. B.
,
2020
, “
Improve Resistance Spot Weld Quality of Advanced High Strength Steels Using Bilateral External Magnetic Field
,”
J. Manuf. Process.
,
52
, pp.
270
280
. 10.1016/j.jmapro.2020.02.030
22.
Moshayedi
,
H.
, and
Sattarifar
,
I.
,
2012
, “
Numerical and Experimental Study of Nugget Size Growth in Resistance Spot Welding of Austenitic Stainless Steels
,”
J. Mater. Process. Technol.
,
212
(
2
), pp.
347
354
. 10.1016/j.jmatprotec.2011.09.004
23.
Bachmann
,
M.
,
Avilov
,
V.
,
Gumenyuk
,
A.
, and
Rethmeier
,
M.
,
2014
, “
Experimental and Numerical Investigation of an Electromagnetic Weld Pool Support System for High Power Laser Beam Welding of Austenitic Stainless Steel
,”
J. Mater. Process. Technol.
,
214
(
3
), pp.
578
591
. 10.1016/j.jmatprotec.2013.11.013
24.
American Welding Society (AWS)
,
AWS D17.2/D17.2M:2013, Specification for Resistance Welding for Aerospace Applications
,
Oct., 30, 2012
.
25.
David
,
S. A.
,
Hanzelka
,
S. E.
, and
Haltom
,
C. P.
,
1981
, “
Ferrite Morphology and Variations in Ferrite Content in Austenitic Stainless Steel Welds
,”
Weld. J.
,
60
, pp.
63
71
.
26.
Brooks
,
J. A.
, and
Thompson
,
A. W.
,
1991
, “
Microstructural Development and Solidification Cracking Susceptibility of Austenitic Stainless Steel Welds
,”
Int. Mater. Rev.
,
36
(
1
), pp.
16
44
. 10.1179/imr.1991.36.1.16
27.
Elmer
,
J. W.
,
Allen
,
S. M.
, and
Eagar
,
T. W.
,
1989
, “
Microstructural Development During Solidification of Stainless Steel Alloys
,”
Metall. Mater. Trans. A
,
20
(
10
), pp.
2117
2131
. 10.1007/bf02650298
28.
Feng
,
Q. B.
,
Li
,
Y. B.
,
Carlson
,
B. E.
, and
Lai
,
X. M.
,
2019
, “
Study of Resistance Spot Weldability of a New Stainless Steel
,”
Sci. Technol. Weld. Joining
,
24
(
2
), pp.
101
111
. 10.1080/13621718.2018.1491378
You do not currently have access to this content.