Abstract

Active disassembly (AD) is an emerging field of research in design for disassembly that enables a cost-effective nondestructive separation of product components. It is based on using active joints and fasteners that enables the self-disassembly of products without any direct contact between the product and the operator, where these joints and fasteners must be inserted in the product during its design and manufacturing phases. Generally, active joints and fasteners are made of smart materials such as shape memory alloys (SMAs), that can generate the necessary disassembly forces required to separate the different components of the product. Most of the exerted effort in this field of research was focused on separating products requiring small disassembly forces either in the electronic or automotive sectors. All these active disassembly applications were based on using shape memory alloy snap fits, clips, or wires that are characterized by their ability to generate small forces with large displacements. As, up to the authors knowledge, none of the exerted efforts were concerned with investigating the possibility of using the large disassembly forces that could be generated using shape memory alloy actuators in large force active disassembly applications. Consequently, the presented research aims to examine the possibility of applying active disassembly with products requiring large disassembly forces, having tapered surfaces and large mechanical structure. By presenting two case studies to validate the possibility of using active disassembly with large force applications, in addition to investigating the capability of using shape memory alloy actuators assembled either concentric or eccentric with the product structure.

References

References
1.
Go
,
T. F.
,
Wahab
,
D. A.
,
Rahman
,
M. N. A.
, and
Ramli
,
R.
,
2010
, “
A Design Framework for End-of-Life Vehicles Recovery: Optimization of Disassembly Sequence Using Genetic Algorithms
,”
Am. J. Environ. Sci.
,
6
(
4
), pp.
350
356
. 10.3844/ajessp.2010.350.356
2.
Duflou
,
J. R.
,
Willems
,
B.
, and
Dewulf
,
W.
,
2006
, “Towards Self-Disassembling Products Design Solutions for Economically Feasible Large-Scale Disassembly,”
Innovation in Life Cycle Engineering and Sustainable Development
,
D.
Brissaud
,
S.
Tichkiewitch
, and
P.
Zwolinski
, eds., pp.
87
110
.
3.
Harrison
,
J.
,
2009
,
Active Disassembly
,
A Rep. Prod. behalf SMART.mat, a Netw. Gr. Mater. KTN © NAMTEC Ltd.
,
Rotherham, UK
.
4.
Chiodo
,
J. D.
, and
Ijomah
,
W. L.
,
2010
, “
Use of Product Self-Disassembly Technology to Improve Remanufacturing Productivity
,”
5th International Conference on Responsive Manufacturing - Green Manufacturing
,
Ningbo, China
, pp.
134
139
.
5.
Yuefeng
,
Z.
,
2014
, “
Design of Active Disassembly Snap-Fit Based on Electrothermal Stimulation Method
,”
Bio Technol.
,
10
(
16
), pp.
9309
9312
.
6.
Carrell
,
J.
,
Zhang
,
H. C.
,
Tate
,
D.
, and
Li
,
H.
,
2009
, “
Review and Future of Active Disassembly
,”
Int. J. Sustain. Eng.
,
2
(
4
), pp.
252
264
. 10.1080/19397030903267431
7.
Mathew
,
Y. R.
, and
Babu
,
B. G.
,
2015
, “
A Real Time Experimental Set Up To Analyse Automatic Actuation of a Fire Sprinkler Using a Shape Memory Alloy (Nitinol)
,”
Transactions of FAMENA
,
39
, pp.
9
22
.
8.
Chekotu
,
J.
,
Groarke
,
R.
,
O’Toole
,
K.
, and
Brabazon
,
D.
,
2019
, “
Advances in Selective Laser Melting of Nitinol Shape Memory Alloy Part Production
,”
Materials (Basel)
,
12
(
5
), p.
809
. 10.3390/ma12050809
9.
Faroughi
,
S.
,
Haddad Khodaparast
,
H.
,
Friswell
,
M. I.
, and
Hosseini
,
S. H.
,
2017
, “
A Shape Memory Alloy Rod Element Based on the Co-Rotational Formulation for Nonlinear Static Analysis of Tensegrity Structures
,”
J. Intell. Mater. Syst. Struct.
,
28
(
1
), pp.
35
46
. 10.1177/1045389X16642532
10.
Jones
,
N.
,
Harrison
,
D.
,
Hussein
,
H.
,
Billett
,
E.
, and
Chiodo
,
J.
,
2004
, “
Towards Self-Disassembling Vehicles
,”
J. Sustain. Prod. Des.
,
3
(
1/2
), pp.
59
74
. 10.1023/B:JSPD.0000035559.65334.d7
11.
Benafan
,
O.
,
Noebe
,
R. D.
, and
Halsmer
,
T. J.
,
2016
, “
Static Rock Splitters Based on High Temperature Shape Memory Alloys for Planetary Explorations
,”
Acta Astronaut.
,
118
, pp.
137
157
. 10.1016/j.actaastro.2015.10.009
12.
Oliveira
,
J. P.
,
Schell
,
N.
,
Zhou
,
N.
,
Wood
,
L.
, and
Benafan
,
O.
,
2019
, “
Laser Welding of Precipitation Strengthened Ni-Rich NiTiHf High Temperature Shape Memory Alloys: Microstructure and Mechanical Properties
,”
Mater. Des.
,
162
, pp.
229
234
. 10.1016/j.matdes.2018.11.053
13.
Chakraborty
,
A.
,
2016
, “
Design and Characterization of Self-Biasing NiTi Spring Actuator
,”
Master thesis
,
Applied Science in Mechanical Engineering
,
Waterloo, Ontario, Canada
.
14.
Guo
,
Z.
,
Pan
,
Y.
,
Wee
,
L. B.
, and
Yu
,
H.
,
2015
, “
Design and Control of a Novel Compliant Differential Shape Memory Alloy Actuator
,”
Sensors Actuators, A Phys.
,
225
, pp.
71
80
. 10.1016/j.sna.2015.01.016
15.
Carosio
,
S.
, and
Zangani
,
D.
,
2000
, “
Application of Shape Memory Alloys to Rock Splitting : A Successful Example of Co-Operation Between Space Research and Industry
,”
Proc. 2nd Conf. Acad. Ind. Coop. Sp. Res., Graz, (ESA SP-470)
,
Graz, Austria
,
Nov. 15–17
, pp.
15
17
.
16.
Abuzied
,
H.
,
Senbel
,
H.
,
Awad
,
M.
, and
Abbas
,
A.
,
2020
, “
A Review of Advances in Design for Disassembly With Active Disassembly Applications
,”
Eng. Sci. Technol. an Int. J.
,
23
(
3
), pp.
618
624
. 10.1016/j.jestch.2019.07.003
17.
Shu
,
S. G.
,
Lagoudas
,
D. C.
,
Hughes
,
D.
, and
Wen
,
J. T.
,
1997
, “
Modeling of a Flexible Beam Actuated by Shape Memory Alloy Wires
,”
Smart Mater. Struct.
,
6
(
3
), pp.
265
277
. 10.1088/0964-1726/6/3/005
18.
Srinivasa
,
A. R.
,
Rao
,
A.
, and
Reddy
,
J. N.
,
2015
,
Design of Shape Memory Alloy (SMA) Actuators
,
Springer Briefs in Applied sciences and Technology Computational Mechanics
.
19.
Benafan
,
O.
,
Noebe
,
R. D.
, and
Halsmer
,
T. J.
,
2015
, “
Shape Memory Alloy Rock Splitters (SMARS)—A Non-Explosive Method for Fracturing Planetary Rocklike Materials and Minerals
,”
NASA
,
218832
, Technical Memorandum, pp.
1
35
.
20.
Nishida
,
M.
,
Kaneko
,
K.
,
Inaba
,
T.
,
Hirata
,
A.
, and
Yamauchi
,
K.
,
1991
, “
Static Rock Breaker Using TiNi Shape Memory Alloy
,”
Mater. Sci. Forum
,
56
(
58
), pp.
711
716
. www.scientific.net/MSF.56-58.711
21.
Florian
,
S.
,
Yann
,
M.
,
Thomas
,
A.
, and
Jean-bernard
,
M.
,
2019
, “
Discharge Component for Pair of
,”
Proc. 18. European Space Mechanisms and Tribology Symposium
,
Munich, Germany
,
Sept. 18–19
.
22.
Vanegas
,
P.
, and
Peeters
,
J. R.
,
2019
, “Disassembly,”
CIRP Encyclopedia of Production Engineering
,
Springer
,
Berlin, Heidelberg
, pp.
506
510
.
23.
Sun
,
L.
,
Huang
,
W. M.
,
Lu
,
H. B.
,
Wang
,
C. C.
, and
Zhang
,
J. L.
,
2014
, “
Shape Memory Technology for Active Assembly/Disassembly: Fundamentals, Techniques and Example Applications
,”
Assem. Autom.
,
34
(
1
), pp.
78
93
. 10.1108/AA-03-2013-031
24.
Kelloggs Research Labs
,
A.
,
2016
, https://www.kelloggsresearchlabs.com/product/rods/
25.
Alam
,
M. S.
,
Youssef
,
M. A.
, and
Nehdi
,
M.
,
2007
, “
Utilizing Shape Memory Alloys to Enhance the Performance and Safety of Civil Infrastructure: A Review
,”
Can. J. Civ. Eng.
,
34
(
9
), pp.
1075
1086
. 10.1139/l07-038
26.
Miková
,
L.
,
Medvecká
,
S.
,
Kelemen
,
B. M.
,
Trebuña
,
F.
, and
Virgala
,
I.
,
2015
, “
Application of Shape Memory Alloy (SMA) as Actuator
,”
Metalurgija
,
54
(
1
), pp.
169
172
.
27.
Singh
,
A.
,
Singh
,
J.
, and
Verma
,
P.
,
2018
, “
Automotive Application of Shape Memory Alloys
,”
15th International Conference on Recent Trends in Engineering
,
India
,
Apr. 1
, pp.
198
204
.
28.
Chiodo
,
J.
, and
Jones
,
N.
,
2012
, “
Smart Materials Use in Active Disassembly
,”
Assem. Autom.
,
32
(
1
), pp.
8
24
. 10.1108/01445151211198683
29.
Maruyama
,
T.
, and
Kubo
,
H.
,
2011
,
Shape Memory and Superelastic Alloys
, 1st ed.,
Technologies and Applications, Woodhead Publishing Limited
,
Cambridge, UK
.
30.
Williams
,
E. A.
,
Shaw
,
G.
, and
Elahinia
,
M.
,
2010
, “
Control of an Automotive Shape Memory Alloy Mirror Actuator
,”
Mechatronics
,
20
(
5
), pp.
527
534
. 10.1016/j.mechatronics.2010.04.002
31.
Fukuta
,
T.
,
IIba
,
M.
,
Kitagawa
,
Y.
, and
Sakai
,
Y.
,
2004
, “
Experimental Study on Stress–Strain Property of Shape Memory Alloy and its Application to Self-Restoration of Structural Members
,”
13th World Conference on Earthquake Engineering
,
Vancouver, BC, Canada
,
Aug. 1–6
.
32.
Chopra
,
I.
, and
Sirohi
,
J.
,
2013
,
Smart Structures Theory
, 1st ed.,
Cambridge University Press
,
New York
.
33.
Henderson
,
E.
,
Nash
,
D. H.
, and
Dempster
,
W. M.
,
2011
, “
On the Experimental Testing of Fine Nitinol Wires for Medical Devices
,”
J. Mech. Behav. Biomed. Mater.
,
4
(
3
), pp.
261
268
. 10.1016/j.jmbbm.2010.10.004
34.
Jani
,
J. M.
,
Leary
,
M.
,
Subic
,
A.
, and
Gibson
,
M. A.
,
2014
, “
A Review of Shape Memory Alloy Research, Applications and Opportunities
,”
Mater. Des. J.
,
56
(
4
), pp.
1078
1113
. 10.1016/j.matdes.2013.11.084
35.
Paridah
,
M.
,
Moradbak
,
A.
,
Mohamed
,
A.
,
Owolabi
,
F.
,
Taiwo
,
A.
,
Asniza
,
M.
, and
Abdul Khalid
,
S. H.
,
2017
, “Development of Faster SMA Actuators,”
Shape Memory Alloys – Fundamentals and Applications
, September,
IntechOpen Limited
,
London, UK
, p.
13
.
36.
Zaras
,
J.
,
Kowal-Michalska
,
K.
, and
Rhodes
,
J.
, eds.,
2001
,
Thin-Walled Structures Advances and Developments
,
Third International Conference on Thin-Walled Structures, Elsevier Ltd
.
37.
Interplant Standard-steel industry – Tapers – Dimensions and Tolerances
,”
IS :1715-1973-IPSS:1-02-035-86
.
38.
SME
,
1998
,
Tool and manufacturing engineers handbook knowledge base
, Fourth, Vol.
1
,
Society of Manufacturing Engineers
,
Michigan, USA
.
39.
NSK Motion & Control
,
2006
, “Fits and Clearances,”
NSK Motion & Control-Pocket Guide
,
NSK
,
England
.
You do not currently have access to this content.