Abstract

Surface errors due to force-induced tool and workpiece deflections are one of the major errors in multi-axis machining of parts especially with thin-walled structures. Dominant approaches to reduce these surface errors are re-machining the part, feed scheduling, and tool path modification. These methods are time consuming and computationally costly, and they rely on experimental data which is used in cutting force and deflection predictions. The present paper introduces a pure geometrical approach to reduce surface errors drastically by minimizing the engagement lengths of flutes’ cutting edges when a point on the flute’s cutting edge is in contact with the design surface. The total engagement length of the flutes’ cutting edges when one of them generates a contact point on the workpiece surface is formulated and considered as the minimization objective function of an optimization problem. Tilt and lead angles, which define the tool orientation, are the design variables of the optimization problem subjected to constraints based on the geometrical requirements of the ball end milling process. The optimization problem uses the nominal tool path to generate an optimal tool path with adjusted tool orientations. The presented method is computationally inexpensive and does not need any experimentally calibrated coefficients to predict cutting forces because of the pure geometrical nature of the approach. The method is experimentally validated through five-axis ball end milling experiments in which more than 90% surface error reduction is achieved.

References

References
1.
Altintas
,
Y.
,
Kersting
,
P.
,
Biermann
,
D.
,
Budak
,
E.
,
Denkena
,
B.
, and
Lazoglu
,
I.
,
2014
, “
Virtual Process Systems for Part Machining Operations
,”
CIRP Ann.
,
63
(
2
), pp.
585
605
. 10.1016/j.cirp.2014.05.007
2.
Wielki
,
N.
,
Kuschel
,
S.
, and
Sölter
,
J.
,
2019
, “
A Comparative Study of the Influence of the Strain-Hardening in Chip Formation Simulations Using Different Software Packages
,”
Proc. CIRP
,
82
, pp.
43
46
. 10.1016/j.procir.2019.03.275
3.
AdvantEgde Software, Third Wave Systems, City West Parkway, MN, https://www.thirdwavesys.com/advantedge/
4.
Altintas
,
Y.
,
2016
, “
Virtual High Performance Machining
,”
Proc. CIRP
,
46
, pp.
72
378
. 10.1016/j.procir.2016.04.154
5.
MACHPRO Software, Manufacturing Automation Laboratory, The University of British Columbia, BC, Canada, https://www.malinc.com/products/machpro/
6.
Umbrello
,
D.
,
M’Saoubi
,
R.
, and
Outeiro
,
J. C.
,
2007
, “
The Influence of Johnson–Cook Material Constants on Finite Element Simulation of Machining of AISI 316L Steel
,”
Int. J. Mach. Tools Manuf.
,
47
(
3–4
), pp.
462
470
. 10.1016/j.ijmachtools.2006.06.006
7.
Altintas
,
Y.
,
2012
,
Manufacturing Automation
,
Cambridge University Press
,
New York, NY
.
8.
Suh
,
S.
,
Cho
,
J.
, and
Hascoet
,
J.
,
1996
, “
Incorporation of Tool Deflection in Tool Path Computation: Simulation and Analysis
,”
J. Manuf. Syst.
,
15
(
3
), pp.
190
199
. 10.1016/0278-6125(96)89571-9
9.
Habibi
,
M.
,
Arezoo
,
B.
, and
Nojedeh
,
M.
,
2011
, “
Tool Deflection and Geometrical Error Compensation by Tool Path Modification
,”
Int. J. Mach. Tools Manuf.
,
51
(
6
), pp.
439
449
. 10.1016/j.ijmachtools.2011.01.009
10.
Soori
,
M.
,
Arezoo
,
B.
, and
Habibi
,
M.
,
2016
, “
Tool Deflection Error of Three-Axis Computer Numerical Control Milling Machines, Monitoring and Minimizing by a Virtual Machining System
,”
ASME J. Manuf. Sci. Eng.
,
138
(
8
), p.
081005
. 10.1115/1.4032393
11.
Wan
,
M.
,
Zhang
,
W. H.
,
Qin
,
G. H.
, and
Wang
,
Z. P.
,
2008
, “
Strategies for Error Prediction and Error Control in Peripheral Milling of Thin-Walled Workpiece
,”
Int. J. Mach. Tools Manuf.
,
48
(
12–13
), pp.
1366
1374
. 10.1016/j.ijmachtools.2008.05.005
12.
Chen
,
W.
,
Xue
,
J.
,
Tang
,
D.
,
Chen
,
H.
, and
Qu
,
S.
,
2009
, “
Deformation Prediction and Error Compensation in Multilayer Milling Processes for Thin-Walled Parts
,”
Int. J. Mach. Tools Manuf.
,
49
(
11
), pp.
859
864
. 10.1016/j.ijmachtools.2009.05.006
13.
Ma
,
W.
,
He
,
G.
, and
Zhu
,
L.
,
2016
, “
Tool Deflection Error Compensation in Five-Axis Ball-End Milling of Sculptured Surface
,”
Int. J. Adv. Manuf. Technol.
,
84
, p.
1421
. 10.1007/s00170-015-7793-8
14.
Wei
,
Z. C.
,
Wang
,
M. J.
, and
Tang
,
W. C.
,
2013
, “
Form Error Compensation in Ball-End Milling of Sculptured Surface With z-Level Contouring Tool Path
,”
Int. J. Adv. Manuf. Technol.
,
67
(
9–12
), pp.
2853
2861
. 10.1007/s00170-012-4698-7
15.
Bera
,
T. C.
,
Desai
,
K. A.
, and
Rao
,
P. V. M.
,
2011
, “
Error Compensation in Flexible End Milling of Tubular Geometries
,”
J. Mater. Process. Technol.
,
211
(
1
), pp.
24
34
. 10.1016/j.jmatprotec.2010.08.013
16.
Ratchev
,
S.
,
Liu
,
S.
,
Huang
,
W.
, and
Becker
,
A. A.
,
2006
, “
An Advanced FEA Based Force Induced Error Compensation Strategy in Milling
,”
Int. J. Mach. Tools Manuf.
,
46
(
5
), pp.
542
551
. 10.1016/j.ijmachtools.2005.06.003
17.
Sun
,
C.
, and
Altintas
,
Y.
,
2016
, “
Chatter Free Tool Orientations in 5-Axis Ball-End Milling
,”
Int. J. Mach. Tools Manuf.
,
106
, pp.
89
97
. 10.1016/j.ijmachtools.2016.04.007
18.
Ozturk
,
E.
,
Tunc
,
L. T.
, and
Budak
,
E.
,
2009
, “
Investigation of Lead and Tilt Angle Effects in 5-Axis Ball-End Milling Processes
,”
Int. J. Mach. Tools Manuf.
,
49
(
14
), pp.
1053
1062
. 10.1016/j.ijmachtools.2009.07.013
19.
Layegh
,
S.
, and
Lazoglu
,
I.
,
2017
, “
3D Surface Topography Analysis in 5-Axis Ball-End Milling
,”
CIRP Ann.
,
66
(
1
), pp.
133
136
. 10.1016/j.cirp.2017.04.021
20.
Layegh
,
S.
,
Yigit
,
I.
, and
Lazoglu
,
I.
,
2015
, “
Analysis of Tool Orientation for 5-Axis Ball-End Milling of Flexible Parts
,”
CIRP Ann.
,
64
(
1
), pp.
97
100
. 10.1016/j.cirp.2015.04.067
21.
Habibi
,
M.
,
Tuysuz
,
O.
, and
Altintas
,
Y.
,
2019
, “
Modification of Tool Orientation and Position to Compensate Tool and Part Deflections in Five-Axis Ball End Milling Operations
,”
ASME J. Manuf. Sci. Eng.
,
141
(
3
), p.
031004
. 10.1115/1.4042019
22.
Altintas
,
Y.
,
Tuysuz
,
O.
,
Habibi
,
M.
, and
Li
,
Z. L.
,
2018
, “
Virtual Compensation of Deflection Errors in Ball End Milling of Flexible Blades
,”
CIRP Ann.
,
67
(
1
), pp.
365
368
. 10.1016/j.cirp.2018.03.001
23.
Engin
,
S.
, and
Altintas
,
Y.
,
2001
, “
Mechanics and Dynamics of General Milling Cutters. Part I: Helical End Mills
,”
Int. J. Mach. Tools Manuf.
,
41
(
15
), pp.
2195
2212
. 10.1016/S0890-6955(01)00045-1
24.
Altintaş
,
Y.
, and
Budak
,
E.
,
1995
, “
Analytical Prediction of Stability Lobes in Milling
,”
CIRP Ann.
,
44
(
1
), pp.
357
362
. 10.1016/S0007-8506(07)62342-7
You do not currently have access to this content.