Abstract

The topology optimization (TO) of structures to be produced using additive manufacturing (AM) is explored using a data-driven constraint function that predicts the minimum producible size of small features in different shapes and orientations. This shape- and orientation-dependent manufacturing constraint, derived from experimental data, is implemented within a TO framework using a modified version of the moving morphable components (MMC) approach. Because the analytic constraint function is fully differentiable, gradient-based optimization can be used. The MMC approach is extended in this work to include a “bootstrapping” step, which provides initial component layouts to the MMC algorithm based on intermediate solid isotropic material with penalization (SIMP) topology optimization results. This “bootstrapping” approach improves convergence compared with reference MMC implementations. Results from two compliance design optimization example problems demonstrate the successful integration of the manufacturability constraint in the MMC approach, and the optimal designs produced show minor changes in topology and shape compared to designs produced using fixed-radius filters in the traditional SIMP approach. The use of this data-driven manufacturability constraint makes it possible to take better advantage of the achievable complexity in additive manufacturing processes, while resulting in typical penalties to the design objective function of around only 2% when compared with the unconstrained case.

References

References
1.
Liu
,
J.
, and
Ma
,
Y.
,
2016
, “
A Survey of Manufacturing Oriented Topology Optimization Methods
,”
Adv. Eng. Software
,
100
, pp.
161
175
. 10.1016/j.advengsoft.2016.07.017
2.
Coelho
,
P.
,
Cardoso
,
J.
,
Fernandes
,
P.
, and
Rodrigues
,
H.
,
2011
, “
Parallel Computing Techniques Applied to the Simultaneous Design of Structure and Material
,”
Adv. Eng. Software
,
42
(
5
), pp.
219
227
. 10.1016/j.advengsoft.2010.10.003
3.
Gu
,
X. J.
,
Zhu
,
J.
, and
Zhang
,
W. H.
,
2012
, “
The Lattice Structure Configuration Design for Stereolithography Investment Casting Pattern Using Topology Optimization
,”
Rapid Prototyp. J.
,
18
(
5
), pp.
353
361
. 10.1108/13552541211250355
4.
Vayre
,
B.
,
Vignat
,
F.
, and
Villeneuve
,
F.
,
2012
, “
Designing for Additive Manufacturing
,”
Procedia CIRP
,
3
, pp.
632
637
. 10.1016/j.procir.2012.07.108
5.
Zhou
,
M.
, and
Rozvany
,
G. I. N.
,
1991
, “
The COC Algorithm, Part II: Topological, Geometrical and Generalized Shape Optimization
,”
Comput. Meth. Appl. Mech. Eng.
,
89
(
1–3
), pp.
309
336
. 10.1016/0045-7825(91)90046-9
6.
Weiss
,
B.
,
Diegel
,
O.
,
Storti
,
D.
, and
Ganter
,
M.
,
2018
, “
A Process for Estimating Minimum Feature Size in Selective Laser Sintering
,”
Rapid Prototyp. J.
,
24
(
4
), pp.
436
440
.
7.
Weiss
,
B.
,
Hamel
,
J.
,
Storti
,
D.
, and
Ganter
,
M.
,
2019
, “
Towards a General Method for Constructing Manufacturability Design Rules for an Additive Manufacturing Process
,”
Progress in Additive Manufacturing
(submitted).
8.
Weiss
,
B.
,
2017
, “
Development of a Process for Determining Minimum Feature Size in Additive Manufacturing With Applications to Topology Optimization
,”
Ph.D. dissertation
,
University of Washington
.
9.
Guo
,
X.
,
Zhang
,
W.
, and
Zhong
,
W.
,
2014
, “
Doing Topology Optimization Explicitly and Geometrically—A New Moving Morphable Components Based Framework
,”
ASME J. Appl. Mech.
,
81
(
8
), p.
081009
. 10.1115/1.4027609
10.
Bendsøe
,
M.
, and
Sigmund
,
O.
,
2003
,
Topology Optimization: Theory, Methods, and Applications
,
Springer
,
Berlin, Germany
.
11.
Deaton
,
J.
, and
Grandhi
,
R.
,
2014
, “
A Survey of Structural and Multidisciplinary Continuum Topology Optimization: Post 2000
,”
Struct. Multidiscipl. Optim.
,
49
(
1
), pp.
1
38
. 10.1007/s00158-013-0956-z
12.
Sigmund
,
O.
, and
Maute
,
K.
,
2013
, “
Topology Optimization Approaches: A Comparative Review
,”
Struct. Multidiscipl. Optim.
,
48
(
6
), pp.
1031
1055
. 10.1007/s00158-013-0978-6
13.
Guest
,
J.
,
Prévost
,
J.
, and
Belytschko
,
T.
,
2004
, “
Achieving Minimum Length Scale in Topology Optimization Using Nodal Design Variables and Projection Functions
,”
Int. J. Numer. Methods Eng.
,
61
(
2
), pp.
238
254
. 10.1002/nme.1064
14.
Deng
,
J.
, and
Chen
,
W.
,
2016
, “
Design for Structural Flexibility Using Connected Morphable Components Based Topology Optimization
,”
Sci. China Technol. Sci.
,
59
(
6
), pp.
839
851
. 10.1007/s11431-016-6027-0
15.
Norato
,
J.
,
Bell
,
B. K.
, and
Tortorelli
,
D.
,
2015
, “
A Geometry Projection Method for Continuum-Based Topology Optimization with Discrete Elements
,”
Comput. Meth. Appl. Mech. Eng.
,
293
, pp.
306
327
. 10.1016/j.cma.2015.05.005
16.
Zhang
,
W.
,
Yuan
,
J.
,
Zhang
,
J.
, and
Guo
,
X.
,
2016
, “
A New Topology Optimization Approach Based on Moving Morphable Components (MMC) and the Ersatz Material Model
,”
Struct. Multidiscipl. Optim.
,
53
(
6
), pp.
1243
1260
. 10.1007/s00158-015-1372-3
17.
Bremicker
,
M.
,
Chirehdast
,
M.
,
Kikuchi
,
N.
, and
Papalambros
,
P.
,
1991
, “
Integrated Topology and Shape Optimization in Structural Design
,”
Mech. Struct. Mach.
,
19
(
4
), pp.
551
587
. 10.1080/08905459108905156
18.
Siddiqi
,
K.
, and
Pizer
,
S.
,
2008
,
Medial Representations: Mathematics, Algorithms and Applications
,
Springer
,
Dordrecht, Netherlands
.
19.
Chang
,
K.-H.
, and
Tang
,
P.-S.
,
2001
, “
Integration of Design and Manufacturing for Structural Shape Optimization
,”
Adv. Eng. Software
,
32
(
7
), pp.
555
567
. 10.1016/S0965-9978(00)00103-4
20.
Lazarov
,
B.
,
Wang
,
F.
, and
Sigmund
,
O.
,
2016
, “
Length Scale and Manufacturability in Density-Based Topology Optimization
,”
Arch. Appl. Mech.
,
86
(
1–2
), pp.
189
218
. 10.1007/s00419-015-1106-4
21.
Osanov
,
M.
, and
Guest
,
J.
,
2017
, “
Topology Optimization for Additive Manufacturing Considering Layer-Based Minimum Feature Sizes
,”
Proceedings of the ASME IDETC/CIE. DETC2017-68383
,
Cleveland, OH
,
Aug. 6
, p.
V02AT03A036
.
22.
Hoang
,
V.-N.
, and
Jang
,
G.-W.
,
2017
, “
Topology Optimization Using Moving Morphable Bars for Versatile Thickness Control
,”
Comput. Meth. Appl. Mech. Eng.
,
317
, pp.
153
173
. DOI 10.1016/j.cma.2016.12.004
23.
Driessen
,
A. M.
,
2016
, “
Overhang Constraint in Topology Optimisation for Additive Manufacturing: A Density Gradient Based Approach
,”
Ph.D. thesis
,
Delft University of Technology
,
Delft, Netherlands
.
24.
Gaynor
,
A. T.
, and
Guest
,
J. K.
,
2016
, “
Topology Optimization Considering Overhang Constraints: Eliminating Sacrificial Support Material in Additive Manufacturing Through Design
,”
Struct. Multidisc. Optim.
,
54
(
5
), p.
1157
1172
. 10.1007/s00158-016-1551-x
25.
Guo
,
X.
,
Zhou
,
J.
,
Zhang
,
W.
,
Du
,
Z.
,
Liu
,
C.
, and
Liu
,
Y.
,
2017
, “
Self-Supporting Structure Design in Additive Manufacturing Through Explicit Topology Optimization
,”
Comput. Meth. Appl. Mech. Eng.
,
323
, pp.
27
63
. DOI 10.1016/j.cma.2017.05.003
26.
Langelaar
,
M.
,
2017
, “
An Additive Manufacturing Filter for Topology Optimization of Print-Ready Designs
,”
Struct. Multidiscipl. Optim.
,
55
(
3
), pp.
871
883
. DOI 10.1007/s00158-016-1522-2
27.
Svanberg
,
K.
,
1987
, “
The Method of Moving Asymptotes—A New Method for Structural Optimization
,”
Int. J. Numer. Methods Eng.
,
24
(
2
), pp.
359
373
. DOI 10.1002/nme.1620240207
28.
Andreassen
,
E.
,
Clausen
,
A.
,
Schevenels
,
M.
,
Lazarov
,
B.
, and
Sigmund
,
O.
,
2011
, “
Efficient Topology Optimization in MATLAB Using 88 Lines of Code
,”
Struct. Multidiscipl. Optim.
,
43
(
1
), pp.
1
16
. DOI 10.1007/s00158-010-0594-7
29.
Weiss
,
B.
,
Hamel
,
J.
,
Ganter
,
M.
, and
Storti
,
D.
,
2018
, “
Data-Driven Additive Manufacturing Constraints for Topology Optimization
,”
Proceedings of the ASME IDETC/CIE Conference
,
Quebec City, PQ
,
Aug. 2018
, DETC2018-85391.
You do not currently have access to this content.