Abstract

This two-part paper is aimed at developing a microstructure-based mechanistic modeling framework to predict the cutting forces and acoustic emissions (AEs) generated during bone sawing. The modeling framework is aimed at the sub-radius cutting condition that dominates chip-formation mechanics during the bone sawing process. Part 1 of this paper deals specifically with the sawing experiments and modeling of the cutting/thrust forces. The model explicitly accounts for key microstructural constituents of the bovine bone (viz., osteon, interstitial matrix, lamellar bone, and woven bone). The cutting and thrust forces are decomposed into their shearing and ploughing components. Microstructure-specific shear stress values critical to the model calculations are estimated using micro-scale orthogonal cutting tests. This approach of estimating the microstructure-specific shear stress overcomes a critical shortcoming in the literature related to high-strain rate characterization of natural composites, where the separation of the individual constituents is difficult. The six model coefficients are calibrated over a range of clinically relevant depth-of-cuts (DOCs) using pure haversian regions (comprising of osteon and interstitial matrix), and pure plexiform regions (comprising of lamellar bone and woven bone). The calibrated model is then used to make predictions in the transition region between the Haversian and plexiform bone, which is characterized by gradient structures involving varying percentages of osteon, interstitial matrix, lamellar bone, and woven bone. The mean absolute percentage error in the force predictions is under 10% for both the cutting and thrust forces. The reality of spatially varied properties in the cortical bone limits the universal use of microstructure-specific shear stress values reported here. Fundamental advancements in the literature associated with both high-strain rate bone mechanics and machining are needed to address this critical limitation.

References

1.
Samuel
,
J.
,
Jun
,
M. B. G.
,
Ozdonganlar
,
O. B.
,
Honegger
,
A.
,
Vogler
,
M.
, and
Kapoor
,
S. G.
,
2020
, “
Micro/Meso-Scale Mechanical Machining 2020: A Two Decade State of the Field Review
,”
ASME J. Manuf. Sci. Eng.
,
142
(
11
), p.
110809
.
2.
Calzada
,
K. A.
,
Kapoor
,
S. G.
,
DeVor
,
R. E.
,
Samuel
,
J.
, and
Srivastava
,
A. K.
,
2011
, “
Modeling and Interpretation of Fiber Orientation-Based Failure Mechanisms in Machining of Carbon Fiber-Reinforced Polymer Composites
,”
J. Manuf. Process.
,
14
(
2
), pp.
141
149
.
3.
Vogler
,
M. P.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
,
2003
, “
Microstructure-Level Force Prediction Model for Micro-Milling of Multi-Phase Materials
,”
ASME J. Manuf. Sci. Eng.
,
125
(
2
), pp.
202
209
.
4.
Plaskos
,
C.
,
Hodgson
,
A. J.
, and
Cinquin
,
P.
,
2003
, “
Modelling and Optimization
,”
Medical Image Computing and Computer-Assisted Intervention-MICCAI 2003
,
Montréal, Canada
,
Nov. 15–18
, Springer, pp.
254
261
.
5.
Davidson
,
S.
, and
James
,
D. F.
,
2003
, “
Drilling in Bone: Modeling Heat Generation and Temperature Distribution
,”
ASME J. Biomech. Eng.
,
125
(
3
), pp.
305
314
.
6.
Augat
,
P.
, and
Schorlemmer
,
S.
,
2006
, “
The Role of Cortical Bone and Its Microstructure in Bone Strength
,”
Age Ageing
,
35
(
Suppl. 2
), pp.
27
31
.
7.
Budak
,
E.
,
Altintas
,
Y.
, and
Armarego
,
E. J. A.
,
1996
, “
Prediction of Milling Force Coefficients From Orthogonal Cutting Data
,”
ASME J. Manuf. Sci. Eng.
,
118
(
2
), pp.
216
224
.
8.
James
,
T. P.
,
Pearlman
,
J. J.
, and
Saigal
,
A.
,
2012
, “
Rounded Cutting Edge Model for the Prediction of Bone Sawing Forces
,”
ASME J. Biomech. Eng.
,
134
(
7
), p.
71001
.
9.
Malak
,
S. F. F.
, and
Anderson
,
I. A.
,
2008
, “
Orthogonal Cutting of Cancellous Bone With Application to the Harvesting of Bone Autograft
,”
Med. Eng. Phys.
,
30
(
6
), pp.
717
724
.
10.
James
,
T. P.
,
Kelly
,
M. P.
,
Lannin
,
T. B.
,
Pearlman
,
J. J.
, and
Saigal
,
A.
,
2013
, “
Sagittal Bone Saw With Orbital Blade Motion for Improved Cutting Efficiency
,”
J. Med. Device
,
7
(
1
), p.
11009
.
11.
James
,
T. P.
,
Pearlman
,
J. J.
, and
Saigal
,
A.
,
2013
, “
Predictive Force Model for Haptic Feedback in Bone Sawing
,”
Med. Eng. Phys.
,
35
(
11
), pp.
1638
1644
.
12.
Weiner
,
S.
, and
Wagner
,
H. D.
,
1998
, “
The Material Bone: Structure-Mechanical Function Relations
,”
Annu. Rev. Mater. Sci.
,
28
(
1
), pp.
271
298
.
13.
Wang
,
X.
,
Mabrey
,
J. D.
, and
Agrawal
,
C.
,
1998
, “
An Interspecies Comparison of Bone Fracture Properties
,”
Biomed. Mater. Eng.
,
8
(
1
), pp.
1
9
.
14.
Conward
,
M.
, and
Samuel
,
J.
,
2016
, “
Machining Characteristics of the Haversian and Plexiform Components of Bovine Cortical Bone
,”
J. Mech. Behav. Biomed. Mater.
,
60
, pp.
525
534
.
15.
Jacobs
,
C. H.
,
Pope
,
M. H.
,
Berry
,
J. T.
, and
Hoaglund
,
F.
,
1974
, “
A Study of the Bone Machining Process—Orthogonal Cutting
,”
J. Biomech.
,
7
(
2
), pp.
131
136
.
16.
Sui
,
J.
,
Sugita
,
N.
,
Ishii
,
K.
,
Harada
,
K.
, and
Mitsuishi
,
M.
,
2013
, “
Force Analysis of Orthogonal Cutting of Bovine Cortical Bone
,”
Mach. Sci. Technol.
,
17
(
4
), pp.
637
649
.
17.
Lee
,
J.
,
Gozen
,
B. A.
, and
Ozdoganlar
,
O. B.
,
2012
, “
Modeling and Experimentation of Bone Drilling Forces
,”
J. Biomech.
,
45
(
6
), pp.
1076
1083
.
18.
Sui
,
J.
,
Sugita
,
N.
,
Ishii
,
K.
,
Harada
,
K.
, and
Mitsuishi
,
M.
,
2014
, “
Mechanistic Modeling of Bone-Drilling Process With Experimental Validation
,”
J. Mater. Process. Technol.
,
214
(
4
), pp.
1018
1026
.
19.
Alam
,
K.
,
Mitrofanov
,
A. V.
, and
Silberschmidt
,
V. V.
,
2009
, “
Finite Element Analysis of Forces of Plane Cutting of Cortical Bone
,”
Comput. Mater. Sci.
,
46
(
3
), pp.
738
743
.
20.
Childs
,
T. H. C.
, and
Arola
,
D.
,
2011
, “
Machining of Cortical Bone: Simulations of Chip Formation Mechanics Using Metal Machining Models
,”
Mach. Sci. Technol.
,
15
(
2
), pp.
206
230
.
21.
Santiuste
,
C.
,
Rodríguez-Millán
,
M.
,
Giner
,
E.
, and
Miguélez
,
H.
,
2014
, “
The Influence of Anisotropy in Numerical Modeling of Orthogonal Cutting of Cortical Bone
,”
Compos. Struct.
,
116
, pp.
423
431
.
22.
Hage
,
I. S.
, and
Hamade
,
R. F.
,
2013
, “
Micro-FEM Orthogonal Cutting Model for Bone Using Microscope Images Enhanced via Artificial Intelligence
,”
Procedia CIRP
,
8
, pp.
385
390
.
23.
Guan
,
F.
,
Sun
,
Y.
,
Qi
,
X.
,
Hu
,
Y.
,
Yu
,
G.
, and
Zhang
,
J.
,
2018
, “
State Recognition of Bone Drilling Based on Acoustic Emission in Pedicle Screw Operation
,”
Sensors
,
18
(
5
), p.
1484
.
24.
Dillon
,
N. P.
,
Kratchman
,
L. B.
,
Dietrich
,
M. S.
,
Labadie
,
R. F.
,
Webster
,
R. J.
, and
Withrow
,
T.
,
2013
, “
An Experimental Evaluation of the Force Requirements for Robotic Mastoidectomy
,”
Otol. Neurotol.
,
34
(
7
), pp.
e93
e102
.
25.
Wiggins
,
K. L.
, and
Malkin
,
S.
,
1978
, “
Orthogonal Machining of Bone
,”
ASME J. Biomech. Eng.
,
100
(
3
), pp.
122
130
.
26.
Yeager
,
C.
,
Nazari
,
A.
, and
Arola
,
D.
,
2008
, “
Machining of Cortical Bone: Surface Texture, Surface Integrity and Cutting Forces
,”
Mach. Sci. Technol.
,
12
(
1
), pp.
100
118
.
27.
Liao
,
Z.
, and
Axinte
,
D. A.
,
2016
, “
On Chip Formation Mechanism in Orthogonal Cutting of Bone
,”
Int. J. Mach. Tools Manuf.
,
102
, pp.
41
55
.
28.
Li
,
S.
,
Demirci
,
E.
, and
Silberschmidt
,
V. V.
,
2013
, “
Variability and Anisotropy of Mechanical Behavior of Cortical Bone in Tension and Compression
,”
J. Mech. Behav. Biomed. Mater.
,
21
, pp.
109
120
.
29.
Morgan
,
E. F.
,
Barnes
,
G. L.
, and
Einhorn
,
T. A.
,
2013
, “The Bone Organ System: Form and Function”,
Osteoporosis
, 4th ed.,
R.
Marcus
,
D.
Dempster
,
J.
Cauley
, and
D.
Feldman
, eds.,
Elsevier
,
New York
, pp.
3
20
.
30.
Abdel-Wahab
,
A. A.
,
Alam
,
K.
, and
Silberschmidt
,
V. V.
,
2011
, “
Analysis of Anisotropic Viscoelastoplastic Properties of Cortical Bone Tissues
,”
J. Mech. Behav. Biomed. Mater.
,
4
(
5
), pp.
807
820
.
31.
Bourne
,
K. A.
,
Jun
,
M. B. G.
,
Kapoor
,
S. G.
, and
DeVor
,
R. E.
,
2008
, “
An Acoustic Emission-Based Method for Determining Contact Between a Tool and Workpiece at the Microscale
,”
ASME J. Manuf. Sci. Eng.
,
130
(
3
), p.
031101
.
32.
Waldorf
,
D. J.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
,
1998
, “
A Slip-Line Field for Ploughing During Orthogonal Cutting
,”
Trans. Soc. Mech. Eng. J. Manuf. Sci. Eng.
,
120
(
4
), pp.
693
699
.
33.
Malekian
,
M.
,
Goo
,
C.
,
Park
,
S.
, and
Jun
,
M. B. G.
,
2012
, “
A New Mechanistic Approach for Micro End Milling Force Modelling
,”
ASME J. Manuf. Sci. Eng.
,
134
(
1
), p.
011006
.
34.
Waldorf
,
D. J.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
,
1999
, “
An Evaluation of Ploughing Models for Orthogonal Machining
,”
121
(
4
), pp.
550
558
.
35.
Lai
,
X.
,
Li
,
H.
,
Li
,
C.
,
Lin
,
Z.
, and
Ni
,
J.
,
2008
, “
Modelling and Analysis of Micro Scale Milling Considering Size Effect, Micro Cutter Edge Radius and Minimum Chip Thickness
,”
Int. J. Mach. Tools Manuf.
,
48
(
1
), pp.
1
14
.
36.
Malekian
,
M.
,
Mostofa
,
M. G.
,
Park
,
S. S.
, and
Jun
,
M. B. G.
,
2012
, “
Modeling of Minimum Uncut Chip Thickness in Micro Machining of Aluminum
,”
J. Mater. Process. Technol.
,
212
(
3
), pp.
553
559
.
37.
Grzesik
,
W.
,
1996
, “
A Revised Model for Predicting Surface Roughness in Turning
,”
Wear
,
194
(
1–2
), pp.
143
148
.
38.
Shukla
,
V. C.
,
Pandey
,
P. M.
,
Dixit
,
U. S.
,
Roy
,
A.
, and
Silberschmidt
,
V.
,
2017
, “
Modeling of Normal Force and Finishing Torque Considering Shearing and Ploughing Effects in Ultrasonic Assisted Magnetic Abrasive Finishing Process With Sintered Magnetic Abrasive Powder
,”
Wear
,
390
, pp.
11
22
.
39.
Zhanqiang
,
L.
,
Zhenyu
,
S.
, and
Yi
,
W.
,
2013
, “
Definition and Determination of the Minimum Uncut Chip Thickness of Microcutting
,”
Int. J. Adv. Manuf. Technol.
,
69
(
5–8
), pp.
1219
1232
.
40.
Manjunathaiah
,
J.
, and
Endres
,
W. J.
,
2000
, “
A Study of Apparent Negative Rake Angle and Its Effect on Shear Angle During Orthogonal Cutting with Edge-Radiused Tools
,”
Trans. Am. Manuf. Res. Inst. SME
,
28
, pp.
197
202
.
41.
Ranganath
,
S.
,
Campbell
,
A. B.
, and
Gorkiewicz
,
D. W.
,
2007
, “
A Model to Calibrate and Predict Forces in Machining with Honed Cutting Tools or Inserts
,”
Int. J. Mach. Tools Manuf.
,
47
(
5
), pp.
820
840
.
42.
Ghaednia
,
H.
,
Wang
,
X.
,
Saha
,
S.
,
Xu
,
Y.
,
Sharma
,
A.
, and
Jackson
,
R. L.
,
2017
, “
A Review of Elastic Plastic Contact Mechanics
,”
ASME Appl. Mech. Rev.
,
69
(
6
), p.
060804
.
43.
Sugita
,
N.
, and
Mitsuishi
,
M.
,
2009
, “
Specifications for Machining the Bovine Cortical Bone in Relation to Its Microstructure
,”
J. Biomech.
,
42
(
16
), pp.
2826
2829
.
44.
Calzada
,
K. A.
,
Samuel
,
J.
,
Kapoor
,
S. G.
,
DeVor
,
R. E.
,
Srivastava
,
A. K.
, and
Iverson
,
J.
,
2010
, “
Failure Mechanisms Encountered in Micro-Milling of Aligned Carbon Fiber Reinforced Polymers
,”
Trans. NAMRI/SME
,
38
, pp.
221
228
.
45.
Merchant
,
M. E.
,
1944
, “
Basic Mechanics of the Metal Cutting Process
,”
ASME J. Appl. Mech.
,
11
(
3
), pp.
168
175
.
46.
Kim
,
H. S.
,
Hong
,
S. I.
, and
Kim
,
S. J.
,
2001
, “
On the Rule of Mixtures for Predicting the Mechanical Properties of Composites With Homogeneously Distributed Soft and Hard Particles
,”
J. Mater. Process. Technol.
,
112
(
1
), pp.
109
113
.
47.
Hogan
,
H. A.
,
1992
, “
Micromechanics Modeling of Haversian Cortical Bone Properties
,”
J. Biomech.
,
25
(
5
), pp.
549
556
.
48.
Swan
,
C. C.
,
Lakes
,
R. S.
,
Brand
,
R. A.
, and
Stewart
,
K. J.
,
2003
, “
Micromechanically Based Poroelastic Modeling of Fluid Flow in Haversian Bone
,”
ASME J. Biomech. Eng.
,
125
(
1
), pp.
25
37
.
49.
An
,
Y. H.
, and
Martin
,
K. L.
,
2003
,
Handbook of Histology Methods for Bone and Cartilage
,
Springer
,
New York
.
50.
Ehmann
,
K. F.
,
2004
, “
The Mechanics of Machining at the Microscale: Assessment of the Current State of the Science
,”
ASME J. Manuf. Sci. Eng.
,
126
(
4
), pp.
666
678
.
51.
Hoffler
,
C. E.
,
Moore
,
K. E.
,
Kozloff
,
K.
,
Zysset
,
P. K.
,
Brown
,
M. B.
, and
Goldstein
,
S. A.
,
2000
, “
Heterogeneity of Bone Lamellar-Level Elastic Moduli
,”
Bone
,
26
(
6
), pp.
603
609
.
You do not currently have access to this content.