Abstract

This study presents a novel expression for the tendon force associated with residual stresses produced during welding of large, thin sections. A general engineering equation is presented as the combination of a closed-form expression, based on idealized treatment, and correction factors to account for the effects of temperature-dependent thermal and mechanical material properties. The closed-form expression corresponds to the assumption of constant material properties. A rigorous mathematical treatment is utilized to derive explicit, exact expressions for the temperature-dependent correction factors without the need for empirical correlations. The temperature-dependent behavior of materials is captured accurately using four dimensionless groups. The analysis was validated through numerical simulations with common structural grades of low-carbon steel, stainless steel, aluminum, and titanium. The idealized treatment resulted in predictions with a mean difference of 18%, which was reduced to 7% by incorporating the correction factors. The remaining error is a systematic overestimate, which can be attributed to compliance effects of the finite plate used in the simulations, and is the focus of ongoing research. The utility of applying the novel tendon force equation to problems in fabrication procedure design is demonstrated with an example predicting distortion during manufacturing of hollow structural sections.

References

1.
Vaidyanathan
,
S.
,
Todaro
,
A. F.
, and
Finnie
,
I.
,
1973
, “
Residual Stresses Due to Circumferential Welds
,”
ASME J. Eng. Mater.
,
95
(
4
), pp.
233
237
.
2.
Legatt
,
R.
,
1984
,
Residual Stresses at Girth Welds in Pipes
,
Pergamon Press
,
Toronto
, pp.
429
440
.
3.
Grams
,
M. R.
,
Ludwig
,
L.
, and
Mendez
,
P. F.
,
2021
, “
A Quantitative Index to Assess the Influence of Joint Fit-Up on Pipeline Weld Root Discontinuities
,”
ASME 2020 13th International Pipeline Conference
,
Calgary, AB, Canada
,
Sept. 28–30
, p.
V003T05A032
. .
4.
Camilleri
,
D.
,
Comlekci
,
T.
, and
Gray
,
T.
,
2005
, “
Design Support Tool for Prediction of Welding Distortion in Multiply-Stiffened Plate Structures Experimental and Computational Investigation
,”
J. Ship Prod.
,
21
(
4
), pp.
219
234
.
5.
Fisher
,
C.
,
Denault
,
L.
,
Rhodes
,
S.
,
Finley
,
J.
, and
Gooroochurn
,
Y.
,
2019
, “
Computational Tool Development for Weld Sequence Planning in Major Assemblies
,”
J. Ship Prod.
,
35
(
3
), pp.
281
288
.
6.
Tall
,
L.
,
1961
, “
Residual Stresses in Welded Plates—A Theoretical Study
,”
Welding J.
,
43
(
1
), pp.
10s
23s
.
7.
Dwight
,
J. B.
, and
Moxham
,
K. E.
,
1969
, “
Welded Steel Plates in Compression
,”
Struct. Eng.
,
47
(
2
), pp.
49
66
.
8.
Denlinger
,
E. R.
,
Irwin
,
J.
, and
Michaleris
,
P.
,
2014
, “
Thermomechanical Modeling of Additive Manufacturing Large Parts
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061007
.
9.
McConaha
,
M.
, and
Anand
,
S.
,
2020
, “
Additive Manufacturing Distortion Compensation Based on Scan Data of Built Geometry
,”
ASME J. Manuf. Sci. Eng.
,
142
(
6
), p.
061001
.
10.
Blodgett
,
O.
,
1966
, “Joint Design and Production: Control of Shrinkage and Distortion,”
Design of Welded Structures
,
The James F. Lincoln Arc Welding Foundation
,
Cleveland, OH
.
11.
Terasaki
,
T.
,
Kitamura
,
T.
,
Kidota
,
I.
,
Ishimura
,
T.
, and
Hamashima
,
S.
,
2003
, “
Study on Longitudinal Shrinkage and Bending Distortion of Fillet T Joint
,”
Q. J. Jpn. Weld. Soc.
,
21
(
1
), pp.
81
86
[in Japanese].
12.
Ueda
,
Y.
, and
Yuan
,
M. G.
,
1993
, “
Prediction of Residual Stresses in Butt Welded Plates Using Inherent Strains
,”
ASME J. Eng. Mater.
,
115
(
4
), pp.
417
423
.
13.
Yuan
,
M. G.
, and
Ueda
,
Y.
,
1996
, “
Prediction of Residual Stresses in Welded T- and I-joints Using Inherent Strains
,”
ASME J. Eng. Mater.
,
118
(
2
), pp.
229
234
.
14.
Luo
,
Y.
,
Murakawa
,
H.
, and
Ueda
,
Y.
,
1997
, “
Prediction of Welding Deformation and Residual Stress by Elastic FEM Based on Inherent Strain (1st Report): Mechanism of Inherent Strain Production
,”
Trans. JWRI
,
26
(
2
), pp.
49
57
.
229
234
.
15.
Murakawa
,
H.
,
Deng
,
D.
,
Ma
,
N.
, and
Wang
,
J.
,
2012
, “
Applications of Inherent Strain and Interface Element to Simulation of Welding Deformation in Thin Plate Structures
,”
Comput. Mater. Sci.
,
51
(
1
), pp.
43
52
.
16.
White
,
J.
,
1977
, “
Longitudinal Shrinkage of a Single Pass Weld
,”
University of Cambridge
,
Cambridge, UK
,
Technical Report No. CUED/C-Struct/TR.57
.
17.
Mendez
,
P. F.
,
Lu
,
Y.
, and
Wang
,
Y.
,
2018
, “
Scaling Analysis of a Moving Point Heat Source in Steady-State on a Semi-Infinite Solid
,”
ASME J. Heat Transf.
,
140
(
8
), p.
081301
.
18.
Wang
,
Y.
,
Lu
,
Y.
, and
Mendez
,
P. F.
,
2019
, “
Scaling Expressions of Characteristic Values for a Moving Point Heat Source in Steady State on a Semi-Infinite Solid
,”
Int. J. Heat Mass Transf.
,
135
, pp.
1118
1129
.
19.
Lu
,
Y.
,
Wang
,
Y.
, and
Mendez
,
P. F.
,
2020
, “
Width of Thermal Features Induced by a 2-D Moving Heat Source
,”
Int. J. Heat Mass Transf.
,
156
, p.
119793
.
20.
Michailov
,
V.
,
Nikolay
,
D.
,
Christoph
,
S.
, and
Ralf
,
O.
,
2011
, “
Hybrid Model for Prediction of Welding Distortions in Large Structures
,”
Front. Mater. Sci.
,
5
(
2
), pp.
209
215
.
21.
Boulton
,
N. S.
, and
Lance Martin
,
H. E.
,
1936
, “
Residual Stresses in Arc-Welded Plates
,”
Proc. Inst. Mech. Eng.
,
133
, pp.
295
347
.
22.
Kamtekar
,
A.
,
White
,
K.
, and
Dwight
,
J.
,
1977
, “
Shrinkage Stresses in a Thin Plate With a Central Weld
,”
J. Strain Anal. Eng. Des.
,
12
(
2
), pp.
140
147
.
23.
Sasayama
,
T.
,
Masubuchi
,
K.
, and
Moriguchi
,
S.
,
1955
, “
Longitudinal Deformation of Long Beam Due to Fillet Welding
,”
Welding J.
,
34
(
12
), pp.
581s
582s
.
24.
Rodgers
,
O.
, and
Fetcher
,
J.
,
1938
, “
Determination of Internal Stress From the Temperature History to a Butt-Welded Plate
,”
Welding J.
,
17
(
11
), pp.
4s
7s
.
25.
Wells
,
A. A.
,
1953
, “
The Mechanics of Notch Brittle Fracture
,”
Weld. Res.
,
7
(
2
), pp.
34r
56r
.
26.
Okerblom
,
N. O.
,
1955
,
Raschet Deformatsii Metallokonstruktsii Pri Svarke [The Calculations of Deformations of Welded Metal Structures]
,
Mashgiz
,
Moscow
, (
Transl. by HMSO, London 1958
).
27.
Ueda
,
Y.
,
Fukuda
,
K.
,
Nakacho
,
K.
, and
Endo
,
S.
,
1975
, “
A New Measuring Method of Residual Stresses With the Aid of Finite Element Method and Reliability of Estimated Values
,”
Trans. JWRI
,
4
(
2
), pp.
19
27
.
28.
Grams
,
M. R.
, and
Mendez
,
P. F.
,
2021
, “
Scaling Analysis of the Thermal Stress Field Produced by a Moving Point Heat Source in a Thin Plate
,”
ASME J. Appl. Mech.
,
88
(
1
), p.
011001
.
29.
Freudenthal
,
A. M.
,
1954
, “
Effect of Rheological Behavior on Thermal Stresses
,”
J. Appl. Phys.
,
25
(
9
), pp.
1110
1117
.
30.
Satoh
,
K.
,
1972
, “
Transient Thermal Stresses of Weld Heat-Affected Zone by Both-Ends-Fixed Bar Analogy
,”
Trans. JWS
,
3
(
1
), pp.
125
134
.
31.
Lu
,
Y.
, and
Mendez
,
P. F.
,
2021
, “
Characteristic Values of a Two-Dimensional Point Moving Heat Source
,”
Int. J. Heat Mass Transf.
,
166
, p.
120671
.
32.
Stacey
,
F. D.
, and
Hodgkinson
,
J. H.
,
2019
, “
Thermodynamics With the Grüneisen Parameter: Fundamentals and Applications to High Pressure Physics and Geophysics
,”
Phys. Earth Planet. Inter.
,
286
(
1
), pp.
42
68
.
33.
Grüneisen
,
E.
,
1926
,
Zustand Des Festen Körpers [the State of a Solid Body]
,
Julius Springer
,
Berlin
(
Transl. by NASA, 1959
).
34.
Belomestnykh
,
V. N.
, and
Tesleva
,
E. P.
,
2004
, “
Interrelation Between Anharmonicity and Lateral Strain in Quasi-Isotropic Polycrystalline Solids
,”
Tech. Phys.
,
49
(
8
), pp.
1098
1100
.
35.
Greaves
,
G. N.
,
Greer
,
A. L.
,
Lakes
,
R. S.
, and
Rouxel
,
T.
,
2011
, “
Poisson’s Ratio and Modern Materials
,”
Nat. Mater.
,
10
(
11
), pp.
823
837
.
36.
The Mathworks, Inc.
,
2020
, “
Trapezoidal Numerical Integration (trapz)
,”
MATLAB Function Reference (R2020b)
, p.
113245
.
37.
Rosenthal
,
D.
,
1946
, “
The Theory of Moving Sources of Heat and Its Application to Metal Treatments
,”
Trans. ASME
,
68
(
11
), pp.
849
866
.
38.
Timoshenko
,
S.
,
1940
,
Combined Bending and Tension
, 2nd ed.,
D. Van Nostrand Company, Inc.
,
New York
, pp.
226
260
.
39.
The James F. Lincoln Arc Welding Foundation
,
2000
. “Welding Carbon and Low-Alloy Steel: Gas Metal Arc Process,”
The Procedural Handbook of Arc Welding
, 14th ed.,
The James F. Lincoln Arc Welding Foundation
,
Cleveland, OH
, Ch. 6.6.
40.
Vagi
,
J. J.
,
Monroe
,
R. E.
,
Evans
,
R. M.
, and
Martin
,
D. C.
,
1965
, “
Welding Processes: MIG Welding
,”
Welding Procedures for Titanium and Titanium Alloys
, pp.
84
102
, TM X-53432. NASA.
41.
Doynov
,
N.
,
Stapelfeld
,
C.
,
Michailov
,
V. G.
,
Pasternak
,
H.
, and
Launert
,
B.
,
2019
, “
Distortion Analysis of Large Scaled Welded Structures
,”
Mathematical Modelling of Weld Phenomena
,
12
, pp.
255
280
.
You do not currently have access to this content.