Abstract

This work reports and compares the structural crystallochemical transformations occurring during the microwave and conventional porcelain manufacture. Batches of greenware (just dried) porcelain pieces are microwave and electrically fired at increasing temperatures, from 420 °C up to 1100 °C. Crystallochemical transformations are identified by X-ray diffraction (XRD) analysis and compared the results from samples microwave and conventionally fired. Microwave fired samples show the full and rapid collapse of kaolinite structure for firing temperatures just above 500 °C, whereas the collapse of kaolinite structure of the electrically fired samples is progressive, from about 500 °C up to 950 °C. Muscovite structure totally collapses at about 950 °C for microwave fired greenware samples, whereas muscovite structure total collapse only occurs at about 1050 °C for electrically fired greenware samples. Microwave and electric firing lead to appreciable differences in the sanidine–orthoclase–microcline structural transformations. Mullite formation could be identified in the microwave fired samples at temperatures 50 °C lower than in the electrically fired ones, especially for the conventional firing temperatures above 1050 °C, the same temperature reported in the literature.

References

1.
Shin
,
Y. C.
,
Wu
,
B.
,
Lei
,
S.
,
Cheng
,
G. J.
, and
Lawrence Yao
,
Y.
,
2020
, “
Overview of Laser Applications in Manufacturing and Materials Processing in Recent Years
,”
ASME J. Manuf. Sci. Eng.
,
142
(
11
), p.
110818
.
2.
Singh
,
S.
,
Singh
,
R.
,
Gupta
,
D.
, and
Jain
,
V.
,
2017
, “
Preliminary Metallurgical and Mechanical Investigations of Microwave Processed Hastelloy Joints
,”
ASME J. Manuf. Sci. Eng.
,
139
(
6
), p.
064503
.
3.
Sutton
,
W. H.
,
1992
, “Microwave Processing of Ceramics—An Overview,”
Microwave Processing of Materials III
,
San Francisco, CA
,
Apr. 27–May 1
,
M. F.
Iskander
,
R. L.
Beatty
, and
W. H.
Sutton
, eds.,
Materials Research Society
,
Pittsburgh, PA
,
269
, pp.
3
20
.
4.
Bhattacharya
,
M.
, and
Basak
,
T.
,
2017
, “
Susceptor-Assisted Enhanced Microwave Processing of Ceramics—A Review
,”
Crit. Rev. Solid State Mater. Sci.
,
42
(
6
), pp.
433
469
.
5.
Jiang
,
W.
,
Li
,
Y.
,
Fang
,
G.
, and
Guo
,
F. L.
,
2020
, “
Effect of Laser Parameters on Microstructure and Fracture Properties of Repaired Cracks With Micro/Nano Material Addition
,”
ASME J. Manuf. Sci. Eng.
,
142
(
5
), p.
054501
.
6.
Santos
,
T.
,
Costa
,
L. C.
,
Hennetier
,
L.
,
Valente
,
M. A.
,
Monteiro
,
J.
, and
Sousa
,
J.
,
2013
, “
Microwave Processing of Porcelain Tableware Using a Multiple Generator Configuration
,”
Appl. Therm. Eng.
,
50
(
1
), pp.
677
682
.
7.
Lerdprom
,
W.
,
Zapata-Solvas
,
E.
,
Jayaseelan
,
D. D.
,
Borrell
,
A.
,
Salvador
,
M. D.
, and
Lee
,
W. E.
,
2017
, “
Impact of Microwave Processing on Porcelain Microstructure
,”
Ceram. Int.
,
43
(
16
), pp.
13765
13771
.
8.
Mizuno
,
M.
,
Takayama
,
T.
,
Obata
,
S.
,
Hirai
,
T.
,
Shimada
,
T.
,
Satake
,
K.
,
Sato
,
M.
,
Mutoh
,
T.
,
Shimotsuma
,
T.
,
Ito
,
S.
,
Inoue
,
T.
,
Esaki
,
K.
, and
Motojima
,
O.
,
2001
, “Analysis of Microwave Sintered Porcelain,”
Ceramic Transactions, Microwaves: Theory and Application in Materials Processing V
,
D. A.
Lewis
,
D. E.
Clark
, and
J. G. P.
Binner
, eds.,
American Ceramic Society
,
Westerville, OH
, pp.
313
319
.
9.
Santos
,
T.
,
Santos
,
N. F.
,
Gomes
,
C. S. F.
,
Hennetier
,
L.
,
Costa
,
V. A.
, and
Costa
,
L. C.
,
2019
, “
Features of Microwave Fired Utilitarian Stoneware
,”
17th International Conference on Microwave and High Frequency Heating
,
E.U.P de València, Valencia
,
Sept. 9–12
, pp.
439
447
.
10.
Carty
,
W. M.
, and
Senapati
,
U.
,
1998
, “
Porcelain—Raw Materials, Processing, Phase Evolution, and Mechanical Behavior
,”
J. Am. Ceram. Soc.
,
81
(
1
), pp.
3
20
.
11.
Lundin
,
S. T.
,
1964
,
Microstructure of Ceramic Materials
,
National Bureau of Standards Miscellaneous Publication
,
Pittsburg
, pp.
93
106
.
12.
Klein
,
A. A.
,
1916
, “
Constitution and Microstructure of Porcelain
.”
13.
Schüller
,
K. H.
,
1979
,
Ceram. Monogr.—A Handb. Ceram.
,
Verlag Schmidt GmbH
,
Freiburg i. Brg.
, pp.
1
6
.
14.
Ryan
,
W.
, and
Radford
,
C.
,
1987
,
Whitewares Production, Testing, and Quality Control: Including Materials, Body Formulations, and Manufacturing Processes
,
Pergamon Press
,
Oxford, UK
.
15.
Reed
,
J. S.
,
1988
,
Introduction to the Principles of Ceramic Processing
,
Wiley
,
New York
.
16.
Iqbal
,
Y.
, and
Lee
,
W. E.
,
2000
, “
Microstructural Evolution in Triaxial Porcelain
,”
J. Am. Ceram. Soc.
,
83
(
12
), pp.
3121
3127
.
17.
Zanelli
,
C.
,
Raimondo
,
M.
,
Guarini
,
G.
, and
Dondi
,
M.
,
2011
, “
The Vitreous Phase of Porcelain Stoneware: Composition, Evolution During Sintering and Physical Properties
,”
J. Non-Cryst. Solids
,
357
(
16–17
), pp.
3251
3260
.
18.
Lee
,
W.
, and
Iqbal
,
Y.
,
2001
, “
Influence of Mixing on Mullite Formation in Porcelain
,”
J. Eur. Ceram. Soc.
,
21
(
14
), pp.
2583
2586
.
19.
Kyonka
,
J. C.
, and
Cook
,
R. L. V.
,
1954
,
The Properties of Feldspars and Their Use in Whitewares
,
University of Illinois at Urbana Champaign, College of Engineering
, Engineering Experiment Station,
IL
. http://hdl.handle.net/2142/4264
20.
Levin
,
E. M.
,
Robbins
,
C. R.
, and
McMurdie
,
H. F.
,
1964
,
Phase Diagrams for Ceramists
,
American Chemical Society
,
Washington, DC
.
21.
Freeman
,
J. J.
,
Wang
,
A.
,
Kuebler
,
K. E.
,
Jolliff
,
B. L.
, and
Haskin
,
L. A.
,
2008
, “
Characterization of Natural Feldspars by Raman Spectroscopy for Future Planetary Exploration
,”
Can. Mineral.
,
46
(
6
), pp.
1477
1500
.
22.
Harrison
,
A. D.
,
Whale
,
T. F.
,
Carpenter
,
M. A.
,
Holden
,
M. A.
,
Neve
,
L.
,
O’Sullivan
,
D.
,
Vergara Temprado
,
J.
, and
Murray
,
B. J.
,
2016
, “
Not All Feldspars Are Equal: A Survey of Ice Nucleating Properties Across the Feldspar Group of Minerals
,”
Atmos. Chem. Phys.
,
16
(
17
), pp.
10927
10940
.
23.
Klein
,
C.
,
2002
,
Manual of Mineral Science
,
John Wiley
,
New York
.
24.
Brown
,
W. L.
, and
Parsonst
,
I. A. N.
,
1989
, “
Alkali Feldspars: Ordering Rates, Phase Transformations and Behaviour Diagrams for Igneous Rocks
,”
Mineral. Mag.
,
53
(
369
), pp.
25
42
.
25.
Waldron
,
K. I. M.
,
1993
, “
Solution-Redeposition and the Orthoclase- Microcline Transformation: Evidence From Granulites and Relevance to 180 Exchange
,”
Mineral. Mag.
,
57
(
389
), pp.
687
695
.
26.
Thompson
,
A. B.
,
Aerts
,
M.
, and
Hack
,
A. C.
,
2007
, “
Liquid Immiscibility in Silicate Melts and Related Systems
,”
Rev. Mineral. Geochem.
,
65
(
1
), pp.
99
127
.
27.
Goldsmith
,
J. R.
, and
Petersen
,
J. W.
,
1990
, “
Hydrothermal Melting Behavior of KAlSi3O8 as Microcline and Sanidine
,”
Am. Mineral.
,
75
(
11–12
), pp.
1362
1369
.
28.
Presnall
,
D. C.
,
1995
, “Phase Diagrams of Earth-Forming Minerals,”
Mineral Physics & Crystallography: A Handbook of Physical Constants
,
T. J.
Ahrens
, ed.,
American Geophysical Union
,
Washington, DC
, pp.
248
286
.
29.
Stone
,
R. L.
, and
Rowland
,
R. A.
,
1954
, “
DTA of Kaolinite and Montmorillonite Under Water Vapor Pressures up to Six Atmospheres
,”
Clays Clay Miner.
,
3
(
54
), pp.
103
116
.
30.
Brindley
,
G. W.
,
Sharp
,
J. H.
,
Patterson
,
J. H.
, and
Narahari Achar
,
B. N.
,
1967
, “
Kinetics and Mechanism of Dehydroxylation Processes: I. Temperature and Vapor Pressure Dependence of Dehydroxylation of Kaolinite
,”
Am. Mineral.
,
52
(
1–2
), pp.
201
211
.
31.
Barth
,
T. F. W.
,
1969
,
Feldspars
,
Wiley-Interscience
,
New York
.
32.
Sipling
,
P. J.
, and
Yund
,
R. A.
,
1976
, “
Experimental Determination of the Coherent Solvus for Sanidine-High Albite
,”
Am. Mineral.
,
61
(
9–10
), pp.
897
906
.
33.
Tomisaka
,
T.
,
1962
, “
On Order-Disorder Transformation and Stability Range of Microcline Under High Water Vapour Pressure
,”
Mineral. J.
,
3
(
5–6
), pp.
261
281
.
34.
Brindley
,
G. W.
, and
Nakahira
,
M.
,
1957
, “
The Role of Water Vapour in the Dehydroxylation of Clay Minerals
,”
Clay Miner. Bull.
,
3
(
17
), pp.
114
119
.
35.
Varga
,
G.
,
2007
, “
The Structure of Kaolinite and Metakaolinite
,”
J. Silic. Based Compos. Mater.
,
59
(
1
), pp.
6
9
.
36.
Gualtieri
,
A.
,
Bellotto
,
M.
,
Artioli
,
G.
, and
Clark
,
S. M.
,
1995
, “
Kinetic Study of the Kaolinite-Mullite Reaction Sequence. Part II: Mullite Formation
,”
Phys. Chem. Miner.
,
22
(
4
), pp.
215
222
.
37.
Bellotto
,
M.
,
Gualtieri
,
A.
,
Artioli
,
G.
, and
Clark
,
S. M.
,
1995
, “
Kinetic Study of the Kaolinite-Mullite Reaction Sequence. Part I: Kaolinite Dehydroxylation
,”
Phys. Chem. Miner.
,
22
(
4
), pp.
207
214
.
38.
Earnest
,
C. M.
,
Cassel
,
R. B.
, and
Mccurdy
,
J.
,
2018
, “
Studying Clay Formulations for Porcelain Ceramics Using Simultaneous Thermal Analysis (STA) Techniques
,”
Ceram. Sci. Eng.
,
1
, pp.
1
8
.
39.
Mazzucato
,
E.
,
Artioli
,
G.
, and
Gualtieri
,
A.
,
1999
, “
High Temperature Dehydroxylation of Muscovite-2M: A Kinetic Study by In Situ XRPD
,”
Phys. Chem. Miner.
,
26
(
5
), pp.
375
381
.
40.
Mackenzie
,
K. J. D.
,
Brown
,
I. W. M.
,
Cardile
,
C. M.
, and
Meinhold
,
R. H.
,
1987
, “
The Thermal Reactions of Muscovite Studied by High-Resolution Solid-State 29-Si and 27-AI NMR
,”
J. Mater. Sci.
,
22
(
7
), pp.
2645
2654
.
41.
Rao
,
S. V. L. N.
,
1959
, “
Low Temperature Alkali Feldspar Series
,”
Tidsskr. Korsk Geol.
,
39
, pp.
275
286
. https://njg.geologi.no/images/NJG_articles/NGT_39_4_275-286.pdf
42.
Santos
,
T.
,
Hennetier
,
L.
,
Costa
,
V. A. F.
, and
Costa
,
L. C.
,
2015
, “
Using Microwave Radiation for Porcelain Tableware Sintering
,”
Progress in Electromagnetics Research Symposium
,
Prague, Czech Republic
,
July 6–9
, pp.
939
943
.
43.
Satapathy
,
L. N.
,
2009
, “
Microwave Assisted Sintering of High Voltage Porcelain Material and Its Characterization
,”
J. Ceram. Process. Res.
,
10
(
5
), pp.
637
642
.
44.
Clark
,
D. E.
, and
Folz
,
D. C.
,
1997
, “
What Is Microwave Processing?
,” p.
26
. https://www.researchgate.net/publication/290488291_Introduction_What_is_Microwave_Processing, Accessed December 2018.
45.
Santos
,
T.
,
Hennetier
,
L.
,
Costa
,
V. A. F.
, and
Costa
,
L. C.
,
2019
, “
Microwave Versus Conventional Porcelain Firing: Temperature Measurement
,”
J. Manuf. Process.
,
41
, pp.
92
100
.
46.
Hamlyn
,
M. G.
, and
Bowden
,
A. L.
,
1990
, “
Microwave Processing of Earthenware Ceramics
,”
Am. Ceram. Soc. Bull.
,
69
(
3
), pp.
368
372
.
47.
Menezes
,
R. R.
,
Souto
,
P. M.
, and
Kiminami
,
R. H. G. A.
,
2007
, “
Microwave Hybrid Fast Sintering of Porcelain Bodies
,”
J. Mater. Process. Technol.
,
190
(
1–3
), pp.
223
229
.
48.
Santos
,
T.
,
Hennetier
,
L.
,
Costa
,
V. A. F.
, and
Costa
,
L. C.
,
2020
, “
Microwave vs Conventional Porcelain Firing: Macroscopic Properties
,”
Int. J. Appl. Ceram. Technol.
,
17
(
5
), pp.
2277
2285
.
49.
Santos
,
T.
,
Costa
,
V. A. F.
, and
Costa
,
L. C.
,
2018
, “
Ovalization and Other Porcelain Flaws When Fired Using Microwave Technology
,”
Proceedings of the 1st Iberic Conference on Theoretical and Experimental Mechanics and Materials/11th National Congress on Experimental Mechanics
,
Porto, Portugal
,
Nov. 4–7
, pp.
1043
1054
.
50.
Monteiro
,
J.
,
Costa
,
L. C.
,
Valente
,
M. A.
,
Santos
,
T.
, and
Sousa
,
J.
,
2011
, “
Simulating the Electromagnetic Field in Microwave Ovens
,”
2011 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC 2011)
,
Natal, Brazil
,
Oct. 29–Nov. 1
. http://dx.doi.org/10.1109/IMOC.2011.6169274
51.
Martín-Márquez
,
J.
,
De La Torre
,
A. G.
,
Aranda
,
M. A. G.
,
Rincón
,
J. M.
, and
Romero
,
M.
,
2009
, “
Evolution with Temperature of Crystalline and Amorphous Phases in Porcelain Stoneware
,”
J. Am. Ceram. Soc.
,
92
(
1
), pp.
229
234
.
52.
Feng
,
H.
,
Li
,
Y.
,
Lin
,
S.
,
Van der Eycken
,
E. V.
, and
Song
,
G.
,
2014
, “
Nano Cu-Catalyzed Efficient and Selective Reduction of Nitroarenes Under Combined Microwave and Ultrasound Irradiation
,”
Sustainable Chem. Process.
,
2
(
1
), p.
14
.
53.
Lee
,
C. S.
,
Binner
,
E.
,
Winkworth-smith
,
C.
,
John
,
R.
,
Gomes
,
R.
, and
Robinson
,
J.
,
2016
, “
Enhancing Natural Product Extraction and Mass Transfer Using Selective Microwave Heating
,”
Chem. Eng. Sci.
,
149
, pp.
97
103
.
54.
Tanaka
,
M.
,
Kono
,
H.
, and
Maruyama
,
K.
,
2009
, “
Selective Heating Mechanism of Magnetic Metal Oxides by a Microwave Magnetic Field
,”
Phys. Rev. B
,
79
(
10
), p.
104420
.
55.
Sperinck
,
S.
,
Raiteri
,
P.
,
Marks
,
N.
, and
Wright
,
K.
,
2011
, “
Dehydroxylation of Kaolinite to Metakaolin—A Molecular Dynamics Study
,”
J. Mater. Chem.
,
21
(
7
), pp.
2118
2125
.
56.
Peelamedu
,
R.
,
Roy
,
R.
,
Agrawal
,
D.
, and
Drawl
,
W.
,
2004
, “
Field Decrystallization and Structural Modifications of Highly Doped Silicon in a 2.45-GHz Microwave Single-Mode Cavity
,”
J. Mater. Res.
,
19
(
6
), pp.
1599
1602
.
57.
Zhou
,
X. B.
,
Qiu
,
F. G.
,
Reddy
,
M. P.
,
Han
,
Y. H.
,
Lee
,
J.
, and
Huang
,
Q.
,
2015
, “
Comparative Study of Conventional and Microwave Sintered Mullite Fibres: Structural Study
,”
Adv. Appl. Ceram.
,
114
(
3
), pp.
139
143
.
58.
Navarro
,
L. C. R.
,
Menezes
,
R. R.
, and
Kiminami
,
R. H. G. A.
,
2014
, “
Microwave Sintering of Mullite-Al2O3 From Kaolin Precursor
,”
Mater. Res.
,
17
(
6
), pp.
1575
1580
.
59.
Iqbal
,
Y.
, and
Lee
,
W. E.
,
1999
, “
Fired Porcelain Microstructures Revisited
,”
J. Am. Ceram. Soc.
,
82
(
12
), pp.
3584
3590
.
60.
Schuller
,
K. H.
,
1964
, “
Reactions Between Mullite and the Glassy Phase in Porcelain
,”
Trans. Br. Ceram. Soc.
,
63
(
2
), pp.
103
117
.
61.
Qiao
,
X.
, and
Xie
,
X.
,
2016
, “
The Effect of Electric Field Intensification at Interparticle Contacts in Microwave Sintering
,”
Sci. Rep.
,
6
(
1
), p.
32163
.
62.
Kobayashi
,
Y.
,
Ohira
,
O.
,
Ohashi
,
Y.
, and
Kato
,
E.
,
1992
, “
Effect of Firing Temperature on Bending Strength of Porcelains for Tableware
,”
J. Am. Ceram. Soc.
,
75
(
7
), pp.
1801
1806
.
You do not currently have access to this content.