Abstract

To obtain high-quality plastic products, an industrial volume-pulsatile injection-molding (VPIM) machine is developed to achieve high screw displacement amplitude. However, it is difficult for engineers to optimize vibration parameters and improve equipment due to lack of a comprehensive understanding of the coupling correlation between amplitude and frequency, which seriously hinders the development of VPIM technology and machine. To address the challenge, this paper investigates the amplitude–frequency characteristics during the volume-pulsatile packing process. According to the working principle of this machine, the dynamics model of injection screw is established and equivalent to a mass-spring-damper system. Based on the dynamics equivalent model, we deduce the forced vibration response of screw displacement, and the vibration responses of screw displacement and oil pressure under the hydraulic system. An oil pressure control model is proposed and numerically solved. Experimental and theoretical results reveal the effects of material properties, machine components, and control system on the amplitude–frequency characteristics during the volume-pulsatile packing process. For injection-molding grade materials, the reductions in oil pressure amplitude and screw displacement amplitude are attributed to the inertial delay of the hydraulic system in this paper, rather than the viscous resistance of materials in the previous perception. The response speed of the servo control system to pressure should be improved to enhance oil pressure amplitude and screw displacement amplitude. This paper enriches the basic theories of polymer vibration processing and points out the direction of equipment improvement.

References

1.
Yokoi
,
H.
,
Han
,
X.
,
Takahashi
,
T.
, and
Kim
,
W. K.
,
2006
, “
Effects of Molding Conditions on Transcription Molding of Microscale Prism Patterns Using Ultra-High-Speed Injection Molding
,”
Polym. Eng. Sci.
,
46
(
9
), pp.
1140
1146
.
2.
Liu
,
C.
, and
Manzione
,
L. T.
,
1996
, “
Process Studies in Precision Injection Molding. I: Process Parameters and Precision
,”
Polym. Eng. Sci.
,
36
(
1
), pp.
1
9
.
3.
Yu
,
S.
,
Zhang
,
T.
,
Zhang
,
Y.
,
Huang
,
Z.
,
Gao
,
H.
,
Han
,
W.
,
Turng
,
L.-S.
, and
Zhou
,
H.
,
2020
, “
Intelligent Setting of Process Parameters for Injection Molding Based on Case-Based Reasoning of Molding Features
,”
J. Intell. Manuf.
4.
Zhang
,
H.
,
Ren
,
L.
,
Gao
,
Y.
, and
Jin
,
B.
,
2017
, “
A Comprehensive Study of Energy Conservation in Electric-Hydraulic Injection-Molding Equipment
,”
Energies
,
10
(
11
), p.
1768
.
5.
Thakur
,
C.
,
Alqosaibi
,
K.
,
Kundu
,
A.
, and
Coulter
,
J. P.
,
2020
, “
Development of Advanced Hybrid Polymer Melt Delivery Systems for Efficient High Precision Injection Molding
,”
ASME J. Manuf. Sci. Eng.
,
142
(
7
), p.
071004
.
6.
Hosseinpour
,
M.
, and
Abdoos
,
H.
,
2020
, “
Manufacturing of Nanocomposites via Powder Injection Molding: Focusing on Thermal Management Systems—A Review
,”
ASME J. Manuf. Sci. Eng.
,
143
(
4
), p.
040801
.
7.
Arinez
,
J. F.
,
Chang
,
Q.
,
Gao
,
R. X.
,
Xu
,
C.
, and
Zhang
,
J.
,
2020
, “
Artificial Intelligence in Advanced Manufacturing: Current Status and Future Outlook
,”
ASME J. Manuf. Sci. Eng.
,
142
(
11
), p.
110804
.
8.
Liu
,
X.
,
Zhang
,
L.
,
Zhou
,
W.
,
Zhou
,
T.
,
Yu
,
J.
,
Lee
,
L. J.
, and
Yi
,
A. Y.
,
2019
, “
Fabrication of Plano-Concave Plastic Lens by Novel Injection Molding Using Carbide-Bonded Graphene-Coated Silica Molds
,”
ASME J. Manuf. Sci. Eng.
,
141
(
8
), p.
081011
.
9.
Sánchez-Valencia
,
A.
, and
Loste
,
J.
,
2018
, “
Characterizing Energy Consumption in Injection Molding: Model Versus Logger
,”
ASME J. Manuf. Sci. Eng.
,
140
(
3
), p.
031013
.
10.
Qu
,
J.-p.
,
1999
, “
Polymer's Electromagnetic Dynamic Injection Molding Method and the Apparatus Therefor
,” U.S. Patent No. 5951928.
11.
Xiao-chun
,
Y.
,
Wen-bin
,
Z.
,
Guang-jian
,
H.
,
Zhi-tao
,
Y.
, and
Jin-ping
,
Q.
,
2013
, “
Influence of Pressure Oscillation on Injection Molding Process
,”
J. Thermoplast. Compos. Mater.
,
27
(
10
), pp.
1417
1427
.
12.
Wang
,
Q.
, and
Qu
,
J.
,
2010
, “
Effects of the Vibration Parameters of a Hydraulic, Dynamic Injection-Molding Machine on the Properties of Low-Density Polyethylene Samples in a Plasticating Process
,”
J. Appl. Polym. Sci.
,
117
(
2
), pp.
1208
1212
.
13.
Wang
,
Q.
, and
Qu
,
J.
,
2006
, “
Mechanical Properties and Morphological Behavior of Calcium Carbonate-Filled Polypropylene in Dynamic Injection Molding
,”
Polym. Int.
,
55
(
11
), pp.
1330
1335
.
14.
Hong-wu
,
W.
,
hai-hang
,
X.
,
Jin-ping
,
Q.
, and
Shao-dan
,
Z.
,
2006
, “
Cavity Pressure Response and Melt Flow Length During Dynamic Injection Molding
,”
Polym.-Plast. Technol. Eng.
,
45
(
8
), pp.
935
937
.
15.
Hong-wu
,
W.
,
Shao-dan
,
Z.
,
Jin-ping
,
Q.
, and
Hai-hang
,
X.
,
2007
, “
Measurement and Analysis of Cavity Pressure and Melt Filling Capacity During Injection Molding
,”
Polym.-Plast. Technol. Eng.
,
46
(
2
), pp.
123
127
.
16.
Qin
,
S.
,
Lu
,
X.
,
Lv
,
S.-y.
,
Xu
,
W.-h.
,
Zhang
,
H.-h.
,
Tan
,
L.-c.
, and
Qu
,
J.-p.
,
2020
, “
Simultaneously Toughening and Reinforcing High-Density Polyethylene via an Industrial Volume-Pulsatile Injection Molding Machine and Poly(Ethylene Terephthalate)
,”
Composites, Part B
,
198
, p.
108243
.
17.
Quan
,
W.
,
Qu
,
J.-P.
, and
Liang
,
H.
,
2006
, “
Effect of Vibration Parameters of Electromagnetic Dynamic Plastics Injection Molding Machine on Mechanical Properties of Polypropylene Samples
,”
J. Appl. Polym. Sci.
,
102
(
2
), pp.
972
976
.
18.
Wang
,
Q.
,
Qu
,
J.
,
Huang
,
C.
,
Liu
,
B.
, and
Sun
,
X.
,
2013
, “
Effect of Vibration Parameters in Plasticizing Process on Properties of Polypropylene by Dynamic Injection Molding
,”
J. Thermoplast. Compos. Mater.
,
28
(
6
), pp.
806
817
.
19.
Gibson
,
J. R.
,
Allan
,
P. S.
, and
Bevis
,
M. J.
,
1990
, “
The Multiple Live-Feed Moulding of DMCs
,”
Compos. Manuf.
,
1
(
3
), pp.
183
190
.
20.
Allan
,
P. S.
,
Bevis
,
M. J.
,
Gibson
,
J. R.
,
May
,
C. J.
, and
Pinwill
,
I. E.
,
1996
, “
Shear Controlled Orientation Technology for the Management of Reinforcing Fibres in Moulded and Extruded Composite Materials
,”
J. Mater. Process. Technol.
,
56
(
1
), pp.
272
281
.
21.
Li
,
Y.
, and
Shen
,
K.
,
2009
, “
Self-Reinforced High-Density Polyethylene Prepared by Low-Frequency, Vibration-Assisted Injection Molding. 1. Processing Conditions and Physical Properties
,”
J. Macromol. Sci., Part B: Phys.
,
48
(
4
), pp.
736
744
.
22.
Layser
,
G. S.
, and
Coulter
,
J. P.
,
2007
, “
Localized Effects of Dynamic Melt Manipulation on Flow Induced Orientation and Mechanical Performance of Injection Molded Products
,”
Polym. Eng. Sci.
,
47
(
11
), pp.
1912
1919
.
23.
Waschitschek
,
K.
,
Kech
,
A.
, and
Christiansen
,
J. d.
,
2002
, “
Influence of Push–Pull Injection Moulding on Fibres and Matrix of Fibre Reinforced Polypropylene
,”
Composites, Part A
,
33
(
5
), pp.
735
744
.
24.
Liu
,
T.
,
Li
,
W.
,
Li
,
L.
,
Peng
,
X.
, and
Kuang
,
T.
,
2019
, “
Effect of Dynamic Oscillation Shear Flow Intensity on the Mechanical and Morphological Properties of High-Density Polyethylene: An Integrated Experimental and Molecular Dynamics Simulation Study
,”
Polym. Test.
,
80
, p.
106122
.
25.
Guangsheng
,
Z.
,
Taijun
,
J.
,
Jinping
,
Q.
, and
Yuejun
,
L.
,
2011
, “
Amplitude–Frequency Characteristics of Polymer Electro-Magnetic Dynamic Tri-Screw Extrusion
,”
J. Appl. Polym. Sci.
,
122
(
3
), pp.
1778
1784
.
26.
Wang
,
Q.
, and
Wu
,
Z.
,
2016
, “
Analysis on Vibration Characteristics of Screw in Filling Process of Dynamic Injection Molding Machine
,”
J. Polym. Eng.
,
36
(
8
), pp.
861
866
.
27.
Shen
,
J.
,
Xu
,
P.
, and
Yu
,
Y.
,
2019
, “
Dynamic Characteristics Analysis and Finite Element Simulation of Steel–BFPC Machine Tool Joint Surface
,”
ASME J. Manuf. Sci. Eng.
,
142
(
1
), p.
011006
.
28.
Zhang
,
J.
,
Long
,
Z.
,
Wang
,
C.
,
Zhao
,
H.
, and
Li
,
Y.
,
2020
, “
Compensation Modeling and Optimization on Contactless Rotary Transformer in Rotary Ultrasonic Machining
,”
ASME J. Manuf. Sci. Eng.
,
142
(
10
), p.
101001
.
29.
Sun
,
Y.
,
Ding
,
L.
,
Liu
,
C.
,
Xiong
,
Z.
, and
Zhu
,
X.
,
2021
, “
Beat Effect in Machining Chatter: Analysis and Detection
,”
ASME J. Manuf. Sci. Eng.
,
143
(
1
), p.
011003
.
30.
Li
,
B.
,
Zhou
,
N.-q.
, and
Wang
,
Y.-m.
,
2008
, “
Study on Properties of Filling Systems in Plastic Axial Vibration Injection Processing
,”
Polym.-Plast. Technol. Eng.
,
47
(
4
), pp.
335
340
.
31.
Qin
,
S.
,
Xu
,
W.-h.
,
Jiang
,
H.-w.
,
Zhang
,
H.-h.
,
He
,
Y.
,
Wu
,
T.
, and
Qu
,
J.-p.
,
2021
, “
Simultaneously Achieving Self-Toughening and Self-Reinforcing of Polyethylene on an Industrial Scale Using Volume-Pulsation Injection Molding
,”
Polymer
,
213
, p.
123324
.
32.
Zheng
,
D.
, and
Alleyne
,
A.
,
2003
, “
Modeling and Control of an Electro-Hydraulic Injection Molding Machine With Smoothed Fill-to-Pack Transition*
,”
ASME J. Manuf. Sci. Eng.
,
125
(
1
), pp.
154
163
.
33.
Rafizadeh
,
M.
,
Patterson
,
W. I.
, and
Kamal
,
M. R.
,
1996
, “
Physically-Based Model of Thermoplastics Injection Molding for Control Applications
,”
Int. Polym. Process.
,
11
(
4
), pp.
352
362
.
34.
Fara
,
D. A.
,
Kamal
,
M. R.
, and
Patterson
,
W. I.
,
1985
, “
Evaluation of Simple Dynamic Models and Controllers for Hydraulic and Nozzle Pressure in Injection Molding
,”
Polym. Eng. Sci.
,
25
(
11
), pp.
714
723
.
35.
Zheng
,
J.-m.
,
Zhao
,
S.-d.
, and
Wei
,
S.-g.
,
2009
, “
Application of Self-tuning Fuzzy PID Controller for a SRM Direct Drive Volume Control Hydraulic Press
,”
Control Eng. Pract.
,
17
(
12
), pp.
1398
1404
.
36.
Yang
,
J.
,
Qin
,
S.
,
Zhang
,
W.
,
Ding
,
T.
,
Zhou
,
B.
,
Li
,
X.
, and
Jian
,
L.
,
2017
, “
Improving the Load-Following Capability of a Solid Oxide Fuel Cell System Through the Use of Time Delay Control
,”
Int. J. Hydrogen Energy
,
42
(
2
), pp.
1221
1236
.
You do not currently have access to this content.