Abstract

This article presents a novel approach to optimize geometric tolerances (flatness and cylindricity) by manipulating the rigidity among finishing and roughing cutting sequences during end milling of thin-walled components. The proposed approach considers the design configuration of the thin-walled component as an input and aims to determine semi-finished geometry such that the geometric tolerance parameters are optimized while performing a finish cutting sequence. The objective is accomplished by combining mechanistic force model, finite element (FE) analysis-based workpiece deflection model, and particle swarm optimization (PSO) technique to determine optimal disposition of material along the length of component thereby regulating rigidity. The algorithm has been validated by determining the rigidity-regulated semi-finished geometries for thin-walled components having straight, concave, and convex configurations. The outcomes of the proposed algorithm are substantiated further by conducting a set of end milling experiments for each of these cases. The results of the proposed strategy are compared with a traditional approach considering no change in the rigidity of component along length of the cut. It is demonstrated that the proposed approach can effectively optimize geometric tolerances for thin-walled components during end milling operation.

References

1.
ASME Y14.5-2009
,
2009
, “
Geometric Gimensioning and Tolerancing- Application, Analysis & Measurement
,”
ASME Press
,
New York
.
2.
ISO 1101:2017
,
2017
,
Geometrical Product Specifications (GPS)—Geometrical Tolerancing—Tolerances of Form, Orientation, Location and Run-Out
,
Geneva
,
Switzerland
.
3.
Obeidat
,
S. M.
, and
Raman
,
S.
,
2011
, “
Process-Guided Coordinate Sampling of End-Milled Flat Plates
,”
Int. J. Adv. Manuf. Technol.
,
53
(
9–12
), pp.
979
991
.
4.
Sheth
,
S.
, and
George
,
P. M.
,
2016
, “
Experimental Investigation and Prediction of Flatness and Surface Roughness During Face Milling Operation of WCB Material
,”
Procedia Technol.
,
23
, pp.
344
351
.
5.
Mikó
,
B.
, and
Rácz
,
G.
,
2018
, “
Investigation of Flatness and Angularity in Case of Ball-End Milling
,”
Proceedings of the International Symposium for Production Research
,
Vienna, Austria
,
Aug. 28–31
, pp.
65
72
.
6.
Sheth
,
S.
, and
George
,
P. M.
,
2016
, “
Experimental Investigation, Prediction and Optimization of Cylindricity and Perpendicularity During Drilling of WCB Material Using Grey Relational Analysis
,”
Precis. Eng.
,
45
, pp.
33
43
.
7.
Agarwal
,
A.
, and
Desai
,
K. A.
,
2021
, “
Modeling of Flatness Errors in End Milling of Thin-Walled Components
,”
Proc. Inst. Mech. Eng. Part B J. Eng. Manuf.
,
235
(
3
), pp.
543
554
.
8.
Agarwal
,
A.
, and
Desai
,
K. A.
,
2020
, “
Predictive Framework for Cutting Force Induced Cylindricity Error Estimation in End Milling of Thin-Walled Components
,”
Precis. Eng.
,
66
, pp.
209
219
.
9.
Ramesh
,
R.
,
Mannan
,
M.
, and
Poo
,
A.
,
2000
, “
Error Compensation in Machine Tools—A Review: Part I: Geometric, Cutting-Force Induced and Fixture-Dependent Errors
,”
Int. J. Mach. Tools Manuf.
,
40
(
9
), pp.
1235
1256
.
10.
Dépincé
,
P.
, and
Hascoët
,
J.-Y.
,
2006
, “
Active Integration of Tool Deflection Effects in End Milling. Part 2. Compensation of Tool Deflection
,”
Int. J. Mach. Tools Manuf.
,
46
(
9
), pp.
945
956
.
11.
Chen
,
W.
,
Xue
,
J.
,
Tang
,
D.
,
Chen
,
H.
, and
Qu
,
S.
,
2009
, “
Deformation Prediction and Error Compensation in Multilayer Milling Processes for Thin-Walled Parts
,”
Int. J. Mach. Tools Manuf.
,
49
(
11
), pp.
859
864
.
12.
Bera
,
T.
,
Desai
,
K. A.
, and
Rao
,
P.
,
2011
, “
Error Compensation in Flexible End Milling of Tubular Geometries
,”
J. Mater. Process. Technol.
,
211
(
1
), pp.
24
34
.
13.
Uddin
,
M. S.
,
Ibaraki
,
S.
,
Matsubara
,
A.
,
Nishida
,
S.
, and
Kakino
,
Y.
,
2007
, “
A Tool Path Modification Approach to Cutting Engagement Regulation for the Improvement of Machining Accuracy in 2D Milling With a Straight End Mill
,”
ASME J. Manuf. Sci. Eng.
,
129
(
6
), pp.
1069
1079
.
14.
Desai
,
K. A.
, and
Rao
,
P.
,
2016
, “
Machining of Curved Geometries With Constant Engagement Tool Paths
,”
Proc. Inst. Mech. Eng. Part B J. Eng. Manuf.
,
230
(
1
), pp.
53
65
.
15.
Huang
,
N.
,
Krebs
,
E.
,
Baumann
,
J.
,
Wirtz
,
A.
,
Jaeger
,
E. M.
, and
Biermann
,
D.
,
2020
, “
A Universal Pocket Plunge Milling Method to Decrease the Maximum Engagement Angle
,”
ASME J. Manuf. Sci. Eng.
,
142
(
8
), p.
081005
.
16.
Habibi
,
M.
,
Tuysuz
,
O.
, and
Altintas
,
Y.
,
2019
, “
Modification of Tool Orientation and Position to Compensate Tool and Part Deflections in Five-Axis Ball End Milling Operations
,”
ASME J. Manuf. Sci. Eng.
,
141
(
3
), p.
031004
.
17.
Liu
,
G.
,
Dang
,
J.
,
Ming
,
W.
,
An
,
Q.
,
Chen
,
M.
, and
Li
,
H.
,
2019
, “
High-Quality Machining of Edges of Thin-Walled Plates by Tilt Side Milling Based on an Analytical Force-Based Model
,”
ASME J. Manuf. Sci. Eng.
,
141
(
6
), p.
061008
.
18.
Chen
,
M.
,
Sun
,
Y.
, and
Xu
,
J.
,
2020
, “
A New Analytical Path-reshaping Model and Solution Algorithm for Contour Error Pre-Compensation in Multi-Axis Computer Numerical Control Machining
,”
ASME J. Manuf. Sci. Eng.
,
142
(
6
), p.
061006
.
19.
Budak
,
E.
, and
Altintas
,
Y.
,
1995
, “
Modeling and Avoidance of Static Form Errors in Peripheral Milling of Plates
,”
Int. J. Mach. Tools Manuf.
,
35
(
3
), pp.
459
476
.
20.
Stori
,
J. A.
, and
Wright
,
P. K.
,
2001
, “
Parameter Space Decomposition for Selection of the Axial and Radial Depth of Cut in Endmilling
,”
ASME J. Manuf. Sci. Eng.
,
123
(
4
), pp.
654
664
.
21.
Ryu
,
S. H.
, and
Chu
,
C. N.
,
2005
, “
The Form Error Reduction in Side Wall Machining Using Successive Down and Up Milling
,”
Int. J. Mach. Tools Manuf.
,
45
(
12–13
), pp.
1523
1530
.
22.
Koike
,
Y.
,
Matsubara
,
A.
,
Nishiwaki
,
S.
,
Izui
,
K.
, and
Yamaji
,
I.
,
2012
, “
Cutting Path Design to Minimize Workpiece Displacement at Cutting Point: Milling of Thin-Walled Parts
,”
Int. J. Autom. Technol.
,
6
(
5
), pp.
638
647
.
23.
Koike
,
Y.
,
Matsubara
,
A.
, and
Yamaji
,
I.
,
2013
, “
Design Method of Material Removal Process for Minimizing Workpiece Displacement at Cutting Point
,”
CIRP Ann.
,
62
(
1
), pp.
419
422
.
24.
Wang
,
J.
,
Ibaraki
,
S.
, and
Matsubara
,
A.
,
2017
, “
A Cutting Sequence Optimization Algorithm to Reduce the Workpiece Deformation in Thin-Wall Machining
,”
Precis. Eng.
,
50
, pp.
506
514
.
25.
Ma
,
J.-w.
,
He
,
G.-z.
,
Liu
,
Z.
,
Qin
,
F.-z.
,
Chen
,
S.-y.
, and
Zhao
,
X.-x.
,
2018
, “
Instantaneous Cutting-Amount Planning for Machining Deformation Homogenization Based on Position-Dependent Rigidity of Thin-Walled Surface Parts
,”
J. Manuf. Process.
,
34
, pp.
401
411
.
26.
Liu
,
Z.
,
Kang
,
R.
,
Liu
,
H.
,
Dong
,
Z.
,
Bao
,
Y.
,
Gao
,
S.
, and
Zhu
,
X.
,
2020
, “
FEM-Based Optimization Approach to Machining Strategy for Thin-Walled Parts Made of Hard and Brittle Materials
,”
Int. J. Adv. Manuf. Technol.
,
110
(
5–6
), pp.
1399
1413
.
27.
Li
,
Z.-L.
, and
Zhu
,
L.-M.
,
2016
, “
Mechanistic Modeling of Five-Axis Machining With a Flat End Mill Considering Bottom Edge Cutting Effect
,”
ASME J. Manuf. Sci. Eng.
,
138
(
11
), p.
111012
.
28.
Agarwal
,
A.
, and
Desai
,
K. A.
,
2020
, “
Importance of Bottom and Flank Edges in Force Models for Flat-End Milling Operation
,”
Int. J. Adv. Manuf. Technol.
,
107
(
3–4
), pp.
1437
1449
.
29.
Wan
,
M.
,
Zhang
,
W.
,
Qiu
,
K.
,
Gao
,
T.
, and
Yang
,
Y.
,
2005
, “
Numerical Prediction of Static Form Errors in Peripheral Milling of Thin-Walled Workpieces With Irregular Meshes
,”
ASME J. Manuf. Sci. Eng.
,
127
(
1
), pp.
13
22
.
30.
Agarwal
,
A.
, and
Desai
,
K. A.
,
2020
, “
Effect of Workpiece Curvature on Axial Surface Error Profile in Flat End-Milling of Thin-Walled Components
,”
Procedia Manuf.
,
48
, pp.
498
507
.
You do not currently have access to this content.