Abstract

Copper contamination of drinking water and marine areas is detrimental to human health and the environment. Physical and chemical approaches currently used for copper removal from water tend to be expensive and may introduce chemicals to the water. Using suspended algae to remove copper is a biological approach. Its cost is relatively low, and algae can be used for other purposes after being used for copper removal. However, this approach using algae is currently limited in its usefulness due to technological barriers. For example, chemical agents used to remove suspended algae from water after copper is absorbed can cause secondary contamination. Using immobilized algae instead of suspended algae can overcome these problems. In this preliminary study, hydrogel filters containing algae cells and those containing no algae cells are printed on an extrusion-based 3D printer. They were used in a custom-build filtration setup for copper removal. Experimental results show that hydrogel filters containing algae cells reduced copper concentration in the test solution by about 83% (from 3 to 0.5 ppm) after 1 h of filtration, while hydrogel filters containing no algae cells reduced copper concentration in the test solution by about 50% (from 3 to 1.5 ppm) after 1 h of filtration.

References

1.
Brewer
,
G. J.
,
2010
, “
Risks of Copper and Iron Toxicity During Aging in Humans
,”
Chem. Res. Toxicol.
,
23
(
2
), pp.
319
326
.
2.
Squitti
,
R.
,
Barbati
,
G.
,
Rossi
,
L.
,
Ventriglia
,
M.
,
Dal Forno
,
G.
,
Cesaretti
,
S.
,
Moffa
,
F.
,
Caridi
,
I.
,
Cassetta
,
E.
, and
Pasqualetti
,
P.
,
2006
, “
Excess of Nonceruloplasmin Serum Copper in AD Correlates With MMSE, CSF β-Amyloid, and h-tau
,”
Neurology
,
67
(
1
), pp.
76
82
.
3.
Gaetke
,
L. M.
, and
Chow
,
C. K.
,
2003
, “
Copper Toxicity, Oxidative Stress, and Antioxidant Nutrients
,”
Toxicology
,
189
(
1–2
), pp.
147
163
.
4.
Winge
,
D. R.
, and
Mehra
,
R. K.
,
1990
, “
Host Defenses Against Copper Toxicity
,”
Int. Rev. Exp. Pathol.
,
31
, pp.
47
83
.
5.
Cech
,
I.
,
Smolensky
,
M. H.
,
Afshar
,
M.
,
Broyles
,
G.
,
Barczyk
,
M.
,
Burau
,
K.
, and
Emery
,
R.
,
2006
, “
Lead and Copper in Drinking Water Fountains-Information for Physicians
,”
South. Med. J.
,
99
(
2
), pp.
137
142
.
6.
Long
,
S.
, and
Martin
,
T.
,
1990
,
Method 200. 8 Determination of Trace Elements in Waters and Wastes by Inductively Coupled Plasma: Mass Spectrometry. Revision 4. 3
,
Environmental Protection Agency
,
Cincinnati, OH
.
7.
Schiff
,
K.
,
Brown
,
J.
,
Diehl
,
D.
, and
Greenstein
,
D.
,
2007
, “
Extent and Magnitude of Copper Contamination in Marinas of the San Diego Region, California, USA
,”
Mar. Pollut. Bull.
,
54
(
3
), pp.
322
328
.
8.
Blanchard
,
J.
, and
Grosell
,
M.
,
2006
, “
Copper Toxicity Across Salinities From Freshwater to Seawater in the Euryhaline Fish Fundulus heteroclitus: Is Copper an Ionoregulatory Toxicant in High Salinities?
,”
Aquat. Toxicol.
,
80
(
2
), pp.
131
139
.
9.
Baltpurvins
,
K.
,
Burns
,
R.
, and
Lawrance
,
G.
,
1996
, “
Heavy Metals in Wastewater: Modelling the Hydroxide Precipitation of Copper (II) From Wastewater Using Lime as the Precipitant
,”
Waste Manage.
,
16
(
8
), pp.
717
725
.
10.
Fu
,
F.
,
Xie
,
L.
,
Tang
,
B.
,
Wang
,
Q.
, and
Jiang
,
S.
,
2012
, “
Application of a Novel Strategy—Advanced Fenton-Chemical Precipitation to the Treatment of Strong Stability Chelated Heavy Metal Containing Wastewater
,”
Chem. Eng. J.
,
189
, pp.
283
287
.
11.
Mirbagheri
,
S. A.
, and
Hosseini
,
S. N.
,
2005
, “
Pilot Plant Investigation on Petrochemical Wastewater Treatmentfor the Removal of Copper and Chromium With the Objective of Reuse
,”
Desalination
,
171
(
1
), pp.
85
93
.
12.
Demiral
,
H.
, and
Güngör
,
C.
,
2016
, “
Adsorption of Copper (II) From Aqueous Solutions on Activated Carbon Prepared From Grape Bagasse
,”
J. Cleaner Prod.
,
124
, pp.
103
113
.
13.
Monser
,
L.
, and
Adhoum
,
N.
,
2002
, “
Modified Activated Carbon for the Removal of Copper, Zinc, Chromium and Cyanide From Wastewater
,”
Sep. Purif. Technol.
,
26
(
2–3
), pp.
137
146
.
14.
Mubarak
,
N.
,
Sahu
,
J.
,
Abdullah
,
E.
, and
Jayakumar
,
N.
,
2014
, “
Removal of Heavy Metals From Wastewater Using Carbon Nanotubes
,”
Sep. Purif. Rev.
,
43
(
4
), pp.
311
338
.
15.
Cséfalvay
,
E.
,
Pauer
,
V.
, and
Mizsey
,
P.
,
2009
, “
Recovery of Copper From Process Waters by Nanofiltration and Reverse Osmosis
,”
Desalination
,
240
(
1–3
), pp.
132
142
.
16.
da Silva
,
J. R. P.
,
Merçon
,
F.
,
da Silva
,
L. F.
,
Cerqueira
,
A. A.
,
Ximango
,
P. B.
, and
da Costa Marques
,
M. R.
,
2015
, “
Evaluation of Electrocoagulation as Pre-Treatment of Oil Emulsions, Followed by Reverse Osmosis
,”
J. Water Process Eng.
,
8
, pp.
126
135
.
17.
Li
,
Y.
,
Xu
,
Z.
,
Liu
,
S.
,
Zhang
,
J.
, and
Yang
,
X.
,
2017
, “
Molecular Simulation of Reverse Osmosis for Heavy Metal Ions Using Functionalized Nanoporous Graphenes
,”
Comput. Mater. Sci.
,
139
, pp.
65
74
.
18.
Martínez
,
A.
,
Uche
,
J.
,
Rubio
,
C.
, and
Carrasquer
,
B.
,
2010
, “
Exergy Cost of Water Supply and Water Treatment Technologies
,”
Desalin. Water Treat.
,
24
(
1–3
), pp.
123
131
.
19.
Abdel-Raouf
,
N.
,
Al-Homaidan
,
A.
, and
Ibraheem
,
I.
,
2012
, “
Microalgae and Wastewater Treatment
,”
Saudi J. Biol. Sci.
,
19
(
3
), pp.
257
275
.
20.
Jarvis
,
A.
,
Gandy
,
C.
,
Bailey
,
M.
,
Davis
,
J.
,
Orme
,
P.
,
Malley
,
J.
,
Potter
,
H.
, and
Moorhouse
,
A.
,
2015
, “
Metal Removal and Secondary Contamination in a Passive Metal Mine Drainage Treatment System
,”
Proceedings of the 10th International Conference on Acid Rock Drainage
,
Santiago, Chile
,
Apr. 21–24
.
21.
Christenson
,
L.
, and
Sims
,
R.
,
2011
, “
Production and Harvesting of Microalgae for Wastewater Treatment, Biofuels, and Bioproducts
,”
Biotechnol. Adv.
,
29
(
6
), pp.
686
702
.
22.
Hoffmann
,
J. P.
,
1998
, “
Wastewater Treatment With Suspended and Nonsuspended Algae
,”
J. Phycol.
,
34
(
5
), pp.
757
763
.
23.
Zeraatkar
,
A. K.
,
Ahmadzadeh
,
H.
,
Talebi
,
A. F.
,
Moheimani
,
N. R.
, and
McHenry
,
M. P.
,
2016
, “
Potential Use of Algae for Heavy Metal Bioremediation, a Critical Review
,”
J. Environ. Manage.
,
181
, pp.
817
831
.
24.
Hallegraeff
,
G.
,
2003
, “
Harmful Algal Blooms: A Global Overview
,”
Man. Harmful Mar. Microalgae
,
33
, pp.
1
22
.
25.
Carmichael
,
W. W.
, and
Boyer
,
G. L.
,
2016
, “
Health Impacts From Cyanobacteria Harmful Algae Blooms: Implications for the North American Great Lakes
,”
Harmful Algae
,
54
, pp.
194
212
.
26.
Lode
,
A.
,
Krujatz
,
F.
,
Brüggemeier
,
S.
,
Quade
,
M.
,
Schütz
,
K.
,
Knaack
,
S.
,
Weber
,
J.
,
Bley
,
T.
, and
Gelinsky
,
M.
,
2015
, “
Green Bioprinting: Fabrication of Photosynthetic Algae Laden Hydrogel Scaffolds for Biotechnological and Medical Applications
,”
Eng. Life Sci.
,
15
(
2
), pp.
177
183
.
27.
Krujatz
,
F.
,
Lode
,
A.
,
Brüggemeier
,
S.
,
Schütz
,
K.
,
Kramer
,
J.
,
Bley
,
T.
,
Gelinsky
,
M.
, and
Weber
,
J.
,
2015
, “
Green Bioprinting: Viability and Growth Analysis of Microalgae Immobilized in 3D Plotted Hydrogels Versus Suspension Cultures
,”
Eng. Life Sci.
,
15
(
7
), pp.
678
688
.
28.
Tam
,
N. F.
,
Wong
,
Y.-S.
, and
Simpson
,
C. G.
,
1998
, “Removal of Copper by Free and Immobilized Microalga, Chlorella Vulgaris,”
Wastewater Treatment With Algae
,
Y.
Wong
, and
N. F. Y.
Tam
, ed.,
Springer
,
New York
, pp.
17
36
.
29.
Singh
,
L.
,
Pavankumar
,
A. R.
,
Lakshmanan
,
R.
, and
Rajarao
,
G. K.
,
2012
, “
Effective Removal of Cu2+ Ions From Aqueous Medium Using Alginate as Biosorbent
,”
Ecol. Eng.
,
38
(
1
), pp.
119
124
.
30.
Papageorgiou
,
S.
,
Kouvelos
,
E.
, and
Katsaros
,
F.
,
2008
, “
Calcium Alginate Beads From Laminaria Digitata for the Removal of Cu+2 and Cd+2 From Dilute Aqueous Metal Solutions
,”
Desalination
,
224
(
1–3
), pp.
293
306
.
31.
Aksu
,
Z.
,
Eğretli
,
G.
, and
Kutsal
,
T.
,
1998
, “
A Comparative Study of Copper (II) Biosorption on Ca-Alginate, Agarose and Immobilized C. vulgaris in a Packed-Bed Column
,”
Process Biochem.
,
33
(
4
), pp.
393
400
.
32.
Mata
,
Y.
,
Blázquez
,
M.
,
Ballester
,
A.
,
González
,
F.
, and
Munoz
,
J.
,
2009
, “
Biosorption of Cadmium, Lead and Copper With Calcium Alginate Xerogels and Immobilized Fucus Vesiculosus
,”
J. Hazard. Mater.
,
163
(
2–3
), pp.
555
562
.
33.
Bajpai
,
S. K.
, and
Sharma
,
S.
,
2004
, “
Investigation of Swelling/Degradation Behaviour of Alginate Beads Crosslinked With Ca2+ and Ba2+ Ions
,”
React. Funct. Polym.
,
59
(
2
), pp.
129
140
.
34.
Thakare
,
K.
,
Jerpseth
,
L.
,
Qin
,
H.
, and
Pei
,
Z.
,
2020
, “
Bioprinting Using Algae: Effects of Extrusion Pressure and Needle Diameter on Cell Quantity in Printed Samples
,”
ASME J. Manuf. Sci. Eng.
,
143
(
1
), p.
014501
.
35.
Malik
,
K. A.
,
1995
, “
A Convenient Method to Maintain Unicellular Green Algae for Long Times as Standing Liquid Cultures
,”
J. Microbiol. Methods
,
22
(
3
), pp.
221
227
.
36.
Russo
,
R.
,
Abbate
,
M.
,
Malinconico
,
M.
, and
Santagata
,
G.
,
2010
, “
Effect of Polyglycerol and the Crosslinking on the Physical Properties of a Blend Alginate-Hydroxyethylcellulose
,”
Carbohydr. Polym.
,
82
(
4
), pp.
1061
1067
.
37.
Thakare
,
K.
,
Jerpseth
,
L.
,
Qin
,
H.
, and
Pei
,
Z.
,
2020
, “
Preliminary Investigation of Removing Copper Contamination From Water Using Algae
,”
Proceedings of ASME 2020 International Manufacturing Science and Engineering Conference (MSEC)
, MSEC2020-8521.
38.
Lee
,
S.
,
Bi
,
X.
,
Reed
,
R. B.
,
Ranville
,
J. F.
,
Herckes
,
P.
, and
Westerhoff
,
P.
,
2014
, “
Nanoparticle Size Detection Limits by Single Particle ICP-MS for 40 Elements
,”
Environ. Sci. Technol.
,
48
(
17
), pp.
10291
10300
.
39.
Ott
,
R. L.
, and
Longnecker
,
M. T.
,
2015
,
An Introduction to Statistical Methods and Data Analysis
,
Nelson Education
,
Toronto, Canada
.
You do not currently have access to this content.