Abstract

Difficult-to-cut materials are widely used in aerospace and other industries. Titanium alloys are the most popular ones among them due to their high strength-to-weight ratio and high temperature resistance. However, in high-speed machining, the alloys are prone to produce serrated chips, which have a serious influence on surface integrity. In this study, a coupled Eulerian–Lagrangian method is used to simulate the orthogonal cutting of Ti6Al4V due to its advantages of avoiding element distortion and improving the data extraction efficiency. The internal relationship between serrated chip formation and periodic profile of machined surfaces is analyzed by the simulation results and experimental data which are obtained by optical microscope and white light interferometer. Furthermore, thermal–mechanical loads on machined surfaces are reconstructed based on the simulation results, and a coupled finite element and cellular automata approach is used to describe the dynamic recrystallization process within the area of the machined surface during the formation of a single serration. According to the results, the periodic fluctuation of cutting forces is attributed to the serrated chip formation phenomenon, which then leads to the periodic profile of machined surfaces. The period is about 60–70 µm, and its amplitude decreases with the increase of cutting speeds. Moreover, the loads on machined surfaces also show the same period due to serrated chip formation. As a result, the grain refinement layer thickness (about 2 ∼ 5 µm) in machined surfaces is related to the surface temperature and exhibits the same periodic characteristics along the cutting direction.

References

1.
Ezugwu
,
E. O.
, and
Wang
,
Z. M.
,
1997
, “
Titanium Alloys and Their Machinability—A Review
,”
J. Mater. Process. Technol.
,
68
(
3
), pp.
262
274
.
2.
Rahman
,
M.
,
Wang
,
Z. G.
, and
Wong
,
Y. S.
,
2006
, “
A Review on High-Speed Machining of Titanium Alloys
,”
JSME Int. J. Ser. C Mech. Syst. Mach. Elem. Manuf.
,
49
(
1
), pp.
11
20
.
3.
Dudzinski
,
D.
,
Devillez
,
A.
,
Moufki
,
A.
,
Larrouquère
,
D.
,
Zerrouki
,
V.
, and
Vigneau
,
J.
,
2004
, “
A Review of Developments Towards Dry and High Speed Machining of Inconel 718 Alloy
,”
Int. J. Mach. Tools Manuf.
,
44
(
4
), pp.
439
456
.
4.
Sima
,
M.
, and
Özel
,
T.
,
2010
, “
Modified Material Constitutive Models for Serrated Chip Formation Simulations and Experimental Validation in Machining of Titanium Alloy Ti-6Al-4V
,”
Int. J. Mach. Tools Manuf.
,
50
(
11
), pp.
943
960
.
5.
Komanduri
,
R.
, and
Hou
,
Z.
,
2002
, “
On Thermoplastic Shear Instability in the Machining of a Titanium Alloy (Ti-6Al-4V)
,”
Metall. Mater. Trans. A
,
33
(
9
), pp.
2995
3010
.
6.
Liu
,
H.
,
Zhang
,
J.
,
Xu
,
X.
, and
Zhao
,
W.
,
2018
, “
Experimental Study on Fracture Mechanism Transformation in Chip Segmentation of Ti-6Al-4V Alloys During High-Speed Machining
,”
J. Mater. Process. Technol.
,
257
, pp.
132
140
.
7.
Guo
,
Y. B.
, and
Yen
,
D. W.
,
2004
, “
A FEM Study on Mechanisms of Discontinuous Chip Formation in Hard Machining
,”
J. Mater. Process. Technol.
,
155–156
, pp.
1350
1356
.
8.
Mabrouki
,
T.
,
Girardin
,
F.
,
Asad
,
M.
, and
Rigal
,
J. F.
,
2008
, “
Numerical and Experimental Study of Dry Cutting for an Aeronautic Aluminium Alloy (A2024-T351)
,”
Int. J. Mach. Tools Manuf.
,
48
(
11
), pp.
1187
1197
.
9.
Su
,
G.
,
Liu
,
Z.
,
Li
,
L.
, and
Wang
,
B.
,
2015
, “
Influences of Chip Serration on Micro-Topography of Machined Surface in High-Speed Cutting
,”
Int. J. Mach. Tools Manuf.
,
89
, pp.
202
207
.
10.
Cui
,
X.
,
Zhao
,
B.
,
Jiao
,
F.
, and
Zheng
,
J.
,
2016
, “
Chip Formation and Its Effects on Cutting Force, Tool Temperature, Tool Stress, and Cutting Edge Wear in High- and Ultra-High-Speed Milling
,”
Int. J. Adv. Manuf. Technol.
,
83
(
1
), pp.
55
65
.
11.
Liu
,
G.
,
Shah
,
S.
, and
Özel
,
T.
,
2019
, “
Material Ductile Failure-Based Finite Element Simulations of Chip Serration in Orthogonal Cutting of Titanium Alloy Ti-6Al-4V
,”
ASME J. Manuf. Sci. Eng.
,
141
(
4
), p.
041017
.
12.
Outeiro
,
J. C.
,
Costes
,
J.-P.
, and
Kornmeier
,
J. R.
,
2013
, “
Cyclic Variation of Residual Stress Induced by Tool Vibration in Machining Operations
,”
Proc. CIRP
,
8
, pp.
493
497
.
13.
Outeiro
,
J. C.
,
Rossi
,
F.
,
Fromentin
,
G.
,
Poulachon
,
G.
,
Germain
,
G.
, and
Batista
,
A. C.
,
2013
, “
Process Mechanics and Surface Integrity Induced by Dry and Cryogenic Machining of AZ31B-O Magnesium Alloy
,”
Proc. CIRP
,
8
, pp.
487
492
.
14.
Ulutan
,
D.
, and
Ozel
,
T.
,
2011
, “
Machining Induced Surface Integrity in Titanium and Nickel Alloys: A Review
,”
Int. J. Mach. Tools Manuf.
,
51
(
3
), pp.
250
280
.
15.
Shen
,
N.
,
Ding
,
H.
,
Pu
,
Z.
,
Jawahir
,
I. S.
, and
Jia
,
T.
,
2017
, “
Enhanced Surface Integrity From Cryogenic Machining of AZ31B Mg Alloy: A Physics-Based Analysis With Microstructure Prediction
,”
ASME J. Manuf. Sci. Eng.
,
139
(
6
), p.
061012
.
16.
Nie
,
G.
,
Zhang
,
K.
,
Outeiro
,
J.
,
Caruso
,
S.
,
Umbrello
,
D.
,
Ding
,
H.
, and
Zhang
,
X.
,
2020
, “
Plastic Strain Threshold Determination for White Layer Formation in Hard Turning of AISI 52100 Steel Using Micro-Grid Technique and Finite Element Simulations
,”
ASME J. Manuf. Sci. Eng.
,
142
(
3
), p.
034501
.
17.
Xu
,
X.
,
Zhang
,
J.
,
Liu
,
H.
,
He
,
Y.
, and
Zhao
,
W.
,
2019
, “
Grain Refinement Mechanism Under High Strain-Rate Deformation in Machined Surface During High Speed Machining Ti6Al4V
,”
Mater. Sci. Eng. A
,
752
, pp.
167
179
.
18.
Wan
,
Z. P.
,
Zhu
,
Y. E.
,
Liu
,
H. W.
, and
Tang
,
Y.
,
2012
, “
Microstructure Evolution of Adiabatic Shear Bands and Mechanisms of Saw-Tooth Chip Formation in Machining Ti6Al4V
,”
Mater. Sci. Eng. A
,
531
, pp.
155
163
.
19.
Shekhar
,
S.
,
Abolghasem
,
S.
,
Basu
,
S.
,
Cai
,
J.
, and
Shankar
,
M. R.
,
2012
, “
Effect of Severe Plastic Deformation in Machining Elucidated Via Rate-Strain-Microstructure Mappings
,”
ASME J. Manuf. Sci. Eng.
,
134
(
3
), pp.
031008
.
20.
Tabei
,
A.
,
Shih
,
D. S.
,
Garmestani
,
H.
, and
Liang
,
S. Y.
,
2016
, “
Dynamic Recrystallization of Al Alloy 7075 in Turning
,”
ASME J. Manuf. Sci. Eng.
,
138
(
1
), p.
071010
.
21.
Behnagh
,
R. A.
,
Shen
,
N.
,
Ansari
,
M. A.
,
Narvan
,
M.
,
Besharati Givi
,
M. K.
, and
Ding
,
H.
,
2015
, “
Experimental Analysis and Microstructure Modeling of Friction Stir Extrusion of Magnesium Chips
,”
ASME J. Manuf. Sci. Eng.
,
138
(
4
), p.
041008
.
22.
Samanta
,
A.
,
Shen
,
N.
,
Ji
,
H.
,
Wang
,
W.
,
Li
,
J.
, and
Ding
,
H.
,
2018
, “
Cellular Automaton Simulation of Microstructure Evolution for Friction Stir Blind Riveting
,”
ASME J. Manuf. Sci. Eng.
,
140
(
3
), p.
031016
.
23.
Ding
,
H.
, and
Shin
,
Y. C.
,
2014
, “
Dislocation Density-Based Grain Refinement Modeling of Orthogonal Cutting of Titanium
,”
ASME J. Manuf. Sci. Eng.
,
136
(
4
), p.
041003
.
24.
Shen
,
N.
, and
Ding
,
H.
,
2014
, “
Physics-Based Microstructure Simulation for Drilled Hole Surface in Hardened Steel
,”
ASME J. Manuf. Sci. Eng.
,
136
(
4
), p.
044504
.
25.
Liu
,
R.
,
Salahshoor
,
M.
,
Melkote
,
S. N.
, and
Marusich
,
T.
,
2015
, “
A Unified Material Model Including Dislocation Drag and Its Application to Simulation of Orthogonal Cutting of OFHC Copper
,”
J. Mater. Process. Technol.
,
216
, pp.
328
338
.
26.
Zhang
,
X. P.
,
Shivpuri
,
R.
, and
Srivastava
,
A. K.
,
2017
, “
A New Microstructure-Sensitive Flow Stress Model for the High-Speed Machining of Titanium Alloy Ti–6Al–4V
,”
ASME J. Manuf. Sci. Eng.
,
139
(
5
), p.
051006
.
27.
Arısoy
,
Y. M.
, and
Özel
,
T.
,
2015
, “
Prediction of Machining Induced Microstructure in Ti–6Al–4V Alloy Using 3-D FE-Based Simulations: Effects of Tool Micro-Geometry, Coating and Cutting Conditions
,”
J. Mater. Process. Technol.
,
220
, pp.
1
26
.
28.
Wang
,
Q.
,
Liu
,
Z.
,
Wang
,
B.
,
Song
,
Q.
, and
Wan
,
Y.
,
2016
, “
Evolutions of Grain Size and Micro-Hardness During Chip Formation and Machined Surface Generation for Ti-6Al-4V in High-Speed Machining
,”
Int. J. Adv. Manuf. Technol.
,
82
(
9–12
), pp.
1725
1736
.
29.
Wang
,
Q.
, and
Liu
,
Z.
,
2018
, “
Microhardness Prediction Based on a Microstructure-Sensitive Flow Stress Model During High Speed Machining Ti-6Al-4V
,”
ASME J. Manuf. Sci. Eng.
,
140
(
9
), p.
091003
.
30.
Ding
,
R.
, and
Guo
,
Z. X.
,
2001
, “
Coupled Quantitative Simulation of Microstructural Evolution and Plastic Flow During Dynamic Recrystallization
,”
Acta Mater.
,
49
(
16
), pp.
3163
3175
.
31.
Ding
,
R.
, and
Guo
,
Z. X.
,
2002
, “
Microstructural Modelling of Dynamic Recrystallisation Using an Extended Cellular Automaton Approach
,”
Comput. Mater. Sci.
,
23
(
1
), pp.
209
218
.
32.
Ding
,
R.
, and
Guo
,
Z. X.
,
2004
, “
Microstructural Evolution of a Ti-6Al-4V Alloy During β-Phase Processing: Experimental and Simulative Investigations
,”
Mater. Sci. Eng. A
,
365
(
1–2
), pp.
172
179
.
33.
Radhakrishnan
,
B.
,
Sarma
,
G.
, and
Zacharia
,
T.
,
1998
, “
Monte Carlo Simulation of Deformation Substructure Evolution During Recrystallization
,”
Scr. Mater.
,
39
(
12
), pp.
1639
1645
.
34.
Takaki
,
T.
, and
Tomita
,
Y.
,
2010
, “
Static Recrystallization Simulations Starting From Predicted Deformation Microstructure by Coupling Multi-Phase-Field Method and Finite Element Method Based on Crystal Plasticity
,”
Int. J. Mech. Sci.
,
52
(
2
), pp.
320
328
.
35.
Raabe
,
D.
,
1998
,
Computational Materials Science—The Simulation of Materials Microstructures and Properties
, Vol. 1,
Wiley-VCH
,
Weinheim
.
36.
Goetz
,
R. L.
, and
Seetharaman
,
V.
,
1998
, “
Modeling Dynamic Recrystallization Using Cellular Automata
,”
Scr. Mater.
,
38
(
3
), pp.
405
413
.
37.
Shen
,
N.
,
Samanta
,
A.
, and
Ding
,
H.
,
2017
, “
Microstructure Simulations for Orthogonal Cutting Via a Cellular Automaton Model
,”
Proc. CIRP
,
58
, pp.
543
548
.
38.
Duan
,
C.
,
Zhang
,
F.
,
Qin
,
S.
,
Sun
,
W.
, and
Wang
,
M.
,
2018
, “
Modeling of Dynamic Recrystallization in White Layer in Dry Hard Cutting by Finite Element—Cellular Automaton Method
,”
J. Mech. Sci. Technol.
,
32
(
9
), pp.
4299
4312
.
39.
Calamaz
,
M.
,
Coupard
,
D.
, and
Girot
,
F.
,
2008
, “
A New Material Model for 2D Numerical Simulation of Serrated Chip Formation When Machining Titanium Alloy Ti–6Al–4V
,”
Int. J. Mach. Tools Manuf.
,
48
(
3
), pp.
275
288
.
40.
Xu
,
X.
,
Zhang
,
J.
,
Outeiro
,
J.
,
Xu
,
B.
, and
Zhao
,
W.
,
2020
, “
Multiscale Simulation of Grain Refinement Induced by Dynamic Recrystallization of Ti6Al4V Alloy During High Speed Machining
,”
J. Mater. Process. Technol.
,
286
, p.
116834
.
41.
Johnson
,
G. R.
, and
Cook
,
W. H.
,
1985
, “
Fracture Characteristics of Three Metals Subjected to Various Strains, Strain Rates, Temperatures and Pressures
,”
Eng. Fract. Mech.
,
21
(
1
), pp.
31
48
.
42.
Simulia
,
D. S. C.
,
2016
,
Abaqus Analysis User's Guide
.
43.
Zhang
,
J.
,
Xu
,
X.
,
Outeiro
,
J.
,
Liu
,
H.
, and
Zhao
,
W.
,
2020
, “
Simulation of Grain Refinement Induced by High-Speed Machining of OFHC Copper Using Cellular Automata Method
,”
ASME J. Manuf. Sci. Eng.
,
142
(
9
), p.
091006
.
44.
Mecking
,
H.
, and
Kocks
,
U. F.
,
1981
, “
Kinetics of Flow and Strain-Hardening
,”
Acta Metall.
,
29
(
11
), pp.
1865
1875
.
45.
Sun
,
F.
,
Zhang
,
D. Q.
,
Cheng
,
L.
,
Zheng
,
P.
,
Liao
,
D. M.
, and
Zhu
,
B.
,
2019
, “
Microstructure Evolution Modeling and Simulation for Dynamic Recrystallization of Cr12MoV Die Steel During Hot Compression Based on Real Metallographic Image
,”
Met. Mater. Int.
,
25
(
4
), pp.
966
981
.
46.
Kugler
,
G.
, and
Turk
,
R.
,
2004
, “
Modeling the Dynamic Recrystallization Under Multi-Stage Hot Deformation
,”
Acta Mater.
,
52
(
15
), pp.
4659
4668
.
47.
Li
,
H.
,
Sun
,
X.
, and
Yang
,
H.
,
2016
, “
A Three-Dimensional Cellular Automata-Crystal Plasticity Finite Element Model for Predicting the Multiscale Interaction among Heterogeneous Deformation, DRX Microstructural Evolution and Mechanical Responses in Titanium Alloys
,”
Int. J. Plast.
,
87
, pp.
154
180
.
48.
Ducobu
,
F.
,
2017
, “
Mesh Influence in Orthogonal Cutting Modelling with the Coupled Eulerian-Lagrangian (CEL) Method
,”
Eur. J. Mech. – A/Solids
,
65
, pp.
324
335
.
49.
Wang
,
B.
, and
Liu
,
Z.
,
2016
, “
Evaluation on Fracture Locus of Serrated Chip Generation With Stress Triaxiality in High Speed Machining of Ti6Al4V
,”
Mater. Des.
,
98
, pp.
68
78
.
50.
Zorev
,
N. N.
,
1963
, “
Inter-Relationship Between Shear Processes Occurring Along Tool Face and Shear Plane in Metal Cutting
,”
Int. Res. Prod. Eng.
,
49
, pp.
143
152
.
51.
Wu
,
D. W.
, and
Liu
,
C. R.
,
1985
, “
An Analytical Model of Cutting Dynamics. Part 1: Model Building
,”
ASME J. Eng. Ind.
,
107
(
2
), pp.
107
111
.
52.
Shuang
,
F.
,
Chen
,
X.
, and
Ma
,
W.
,
2018
, “
Numerical Analysis of Chip Formation Mechanisms in Orthogonal Cutting of Ti6Al4V Alloy Based on a CEL Model
,”
Int. J. Mater. Form.
,
11
(
2
), pp.
185
198
.
53.
Xu
,
X.
,
Zhang
,
J.
,
Liu
,
H.
,
Qi
,
Y.
,
Liu
,
Z.
, and
Zhao
,
W.
,
2018
, “
Effect of Morphological Evolution of Serrated Chips on Surface Formation During High Speed Cutting Ti6Al4V
,”
Proc. CIRP
,
77
, pp.
147
150
.
54.
Liu
,
H.
,
Zhang
,
J.
,
Xu
,
B.
,
Xu
,
X.
, and
Zhao
,
W.
,
2020
, “
Prediction of Microstructure Gradient Distribution in Machined Surface Induced by High Speed Machining Through a Coupled FE and CA Approach
,”
Mater. Des.
,
196
, p.
109133
.
55.
Huang
,
K.
, and
Logé
,
R. E.
,
2016
, “
A Review of Dynamic Recrystallization Phenomena in Metallic Materials
,”
Mater. Des.
,
111
, pp.
548
574
.
56.
Wang
,
B.
,
Liu
,
Z.
, and
Yang
,
Q.
,
2013
, “
Investigations of Yield Stress, Fracture Toughness, and Energy Distribution in High Speed Orthogonal Cutting
,”
Int. J. Mach. Tools Manuf.
,
73
, pp.
1
8
.
You do not currently have access to this content.