Abstract

The rapid growth of electric vehicle (EV) market promotes the mass production of lithium-ion batteries. However, the battery production is subjected to high cost and serious environmental issues. Effective and efficient end-of-use lithium-ion battery (LIB) management should be carried out to enhance sustainable development, following the principles of the triple bottom line and circular economy. From the life cycle perspective, battery refurbishing and material recovery are the two major end-of-use options to recover the value of spent batteries. The refurbishing of spent batteries can extend the battery useful life and make full use of battery remaining functional value. Material recycling can recover the battery materials for a new life cycle. However, there still exist many barriers that should be investigated to ensure the success of end-of-use battery recovery. The review covered the pathways to present a full view of end-of-use battery recovery, identified the key bottlenecks in different dimensions, and discussed the strategies for specific scenarios. Industrial practice and pilot projects associated with the two end-of-use options are summarized. In the end, analysis and research suggestions are provided to facilitate the establishment of a sustainable circular battery recovery system.

References

1.
Global EV Outlook
,
2019
,
Scaling-Up the Transition to Electric Mobility
,
International Energy Agency
.
2.
Harper
,
G.
,
Sommerville
,
R.
,
Kendrick
,
E.
,
Driscoll
,
L.
, and
Anderson
,
P.
,
2019
, “
Recycling Lithium-Ion Batteries From Electric Vehicles
,”
Nature
,
575
(
7781
), pp.
75
86
.
3.
Meshram
,
P.
,
Pandey
,
B. D.
, and
Mankhand
,
T. R.
,
2014
, “
Extraction of Lithium From Primary and Secondary Sources by Pre-Treatment, Leaching and Separation: A Comprehensive Review
,”
Hydrometallurgy
,
150
, pp.
192
208
.
4.
Katwala
,
A.
,
2018
, “
The Spiraling Environmental Cost of Our Lithium Battery Addiction
,” March 1, 2020, https://www.wired.co.uk/article/lithium-batteries-environment-impact, Accessed August 2, 2020.
5.
Freeman
,
G. K.
,
Inventor; Sherritt International Corp., Assignee
,
2001
,
Process for Recovery of Cobalt by Selective Precipitation of Cobalt-Calcium Double Salt, U.S. Patent No. 6,264,904, July 24
,
2001
.
6.
The London Metal Exchange—An HKEX Company: London Metal Exchange Home Page
,
2018
,
https://www.lme.com/, Accessed February 8, 2020
.
7.
Gaines
,
L.
,
Richa
,
K.
, and
Spangenberger
,
J.
,
2018
, “
Key Issues for Li-Ion Battery Recycling
,”
MRS Energy Sustainability
,
5
(
1
).
8.
Ortegon
,
K.
,
Nies
,
L.
, and
Sutherland
,
J. W.
,
2019
, “Recycling,”
CIRP Encyclopedia of Production Engineering
,
S.
Chatti
,
L.
Laperrière
,
G.
Reinhart
, and
T.
Tolio
, eds.,
Springer
,
Berlin, Heidelberg
.
9.
Steward
,
D.
,
Mayyas
,
A.
, and
Mann
,
M.
,
2019
, “
Economics and Challenges of Li-Ion Battery Recycling From End-of-Life Vehicles
,”
Procedia Manuf.
,
33
, pp.
272
279
.
10.
The Interim Measures for The Management of Power Battery Recovery and Utilization of New Energy Vehicles. Seven Ministries and Commissions Including the Ministry of Industry and Information Technology
. http://www.gov.cn/xinwen/2018-02/26/content_5268875.htm. Accessed November 9, 2020.
11.
The Interim Provisions on The Traceability Management of Power Battery Recovery and Utilization of New Energy Vehicles
.
2018
.
The Ministry of Industry and Information Technology of the People's Republic of China
. https://www.miit.gov.cn/zwgk/zcjd/art/2020/art_6abdf0902cc244ad9b4c04820129dfca.html. Accessed November 9, 2020.
12.
Lebedeva
,
N.
,
Di Persio
,
F.
, and
Boon-Brett
,
L.
,
2016
,
Lithium-Ion Battery Value Chain and Related Opportunities for Europe
,
European Commission
.
13.
Golenbiewski
,
B.
,
Trajer
,
J.
,
Malgorzata
,
J.
, and
Winiczenko
,
R.
,
2013
, “
Modelling of the Location of Vehicle Recycling Facilities: A Case Study in Poland
,”
Resour., Conserv. Recycl.
,
80
, pp.
10
20
.
14.
UN Recommendations on the Transport of Dangerous Goods—Manual of Tests and Criteria: Section 38.3, Manual of Tests and Criteria
(
2016
).
15.
Herrmann
,
C.
,
Raatz
,
A.
,
Mennenga
,
M.
,
Schmitt
,
J.
, and
Andrew
,
S.
,
2012
,
Assessment of Automation Potentials for the Disassembly of Automotive Lithium Ion Battery Systems, Leveraging Technology for a Sustainable World
,
Springer
,
Berlin, Heidelberg
,
149
154
.
16.
Wang
,
Y.
,
Mendis
,
G.
,
Peng
,
S.
, and
Sutherland
,
J.
,
2019
, “
Component-Oriented Reassembly in Remanufacturing Systems: Managing Uncertainty and Satisfying Customer Needs
,”
ASME J. Manuf. Sci. Eng.
,
141
(
2
), p.
021005
.
17.
Ilgin
,
M. A.
,
2019
, “
A DEMATEL-Based Disassembly Line Balancing Heuristic
,”
ASME J. Manuf. Sci. Eng.
,
141
(
2
), p.
021002
.
18.
Rallo
,
H.
,
Benvenistea
,
G.
,
Gestosob
,
I.
, and
Amantea
,
B.
, “
Economic Analysis of the Disassembling Activities to the Reuse of Electric Vehicles Li-Ion Batteries
,”
Resour., Conserv. Recycl.
,
159
, p.
104785
.
19.
Zhang
,
Q.
,
Sekol
,
R. C.
,
Zhang
,
C.
,
Li
,
Y.
, and
Carlson
,
B. E.
,
2019
, “
Joining Lithium-Ion Battery Tabs Using Solder-Reinforced Adhesive
,”
ASME J. Manuf. Sci. Eng.
,
141
(
4
), p.
044502
.
20.
Bag
,
S.
,
DiGiovanni
,
C.
,
Han
,
X.
, and
Zhou
,
N. Y.
,
2020
, “
A Phenomenological Model of Resistance Spot Welding on Liquid Metal Embrittlement Severity Using Dynamic Resistance Measurement
,”
ASME J. Manuf. Sci. Eng.
,
142
(
3
), p.
031007
.
21.
Lee
,
T. H.
,
Fan
,
H.
,
Li
,
Y.
,
Shriver
,
D.
,
Arinez
,
J.
,
Xiao
,
G.
, and
Banu
,
M.
,
2020
, “
Enhanced Performance of Ultrasonic Welding of Short Carbon Fiber Polymer Composites Through Control of Morphological Parameters
,”
ASME J. Manuf. Sci. Eng.
,
142
(
1
), p.
011009
.
22.
Deng
,
L.
,
Li
,
Y.
,
Cai
,
W.
,
Haselhuhn
,
A. S.
, and
Carlson
,
B. E.
,
2020
, “
Simulating Thermoelectric Effect and Its Impact on Asymmetric Weld Nugget Growth in Aluminum Resistance Spot Welding
,”
ASME J. Manuf. Sci. Eng.
,
142
(
9
), p.
091001
.
23.
Zhang
,
Y. M.
,
Yang
,
Y.
,
Zhang
,
W.
, and
Na
,
S.
,
2020
, “
Advanced Welding Manufacturing: A Brief Analysis and Review of Challenges and Solutions
,”
ASME J. Manuf. Sci. Eng.
,
142
(
11
), p.
110816
.
24.
Liu
,
Z.
,
Li
,
Y.
,
Wang
,
Y.
,
Kannatey-Asibu
E.
, Jr.
, and
Epureanu
,
B. I.
,
2019
, “
Nonlinear Dynamics of Friction Heating in Ultrasonic Welding
,”
ASME J. Manuf. Sci. Eng.
,
141
(
6
), p.
061011
.
25.
Guo
,
W.
,
Jin
,
J.
, and
Jack Hu
,
S.
,
2019
, “
Profile Monitoring and Fault Diagnosis via Sensor Fusion for Ultrasonic Welding
,”
ASME J. Manuf. Sci. Eng.
,
141
(
8
), p.
081001
.
26.
Buffa
,
G.
,
Campanella
,
D.
,
Forcellese
,
A.
,
Fratini
,
L.
,
Simoncini
,
M.
, and
Barcellona
,
A.
,
2019
, “
Constant Heat Input Friction Stir Welding of Variable Thickness AZ31 Sheets Through in-Process Tool Rotation Control
,”
ASME J. Manuf. Sci. Eng.
,
141
(
8
), p.
081002
.
27.
Kampker
,
A.
,
Wessel
,
S.
,
Fiedler
,
F.
, and
Maltoni
,
F.
,
2020
, “
Battery Pack Remanufacturing Process up to Cell Level With Sorting and Repurposing of Battery Cells
,”
J. Remanufacturing.
28.
Kellens
,
K.
,
Rodrigues
,
G. C.
,
Dewulf
,
W.
, and
Duflou
,
J.
,
2014
, “
Energy and Resource Efficiency of Laser Cutting Processes
,”
Phys. Procedia
, pp.
854
864
.
29.
Yilbas
,
B. S.
,
Shaukat
,
M. M.
, and
Ashraf
,
F.
,
2017
, “
Laser Cutting of Various Materials: Kerf Width Size Analysis and Life Cycle Assessment of Cutting Process
,”
Opt. Laser Technol.
, pp.
67
73
.
30.
Marconi
,
M.
,
Palmieri
,
G.
,
Callegari
,
M.
, and
Germani
,
M.
,
2019
, “
Feasibility Study and Design of an Automatic System for Electronic Components Disassembly
,”
ASME J. Manuf. Sci. Eng.
,
141
(
2
), p.
021011
.
31.
Schmitt
,
J.
,
Haupt
,
H.
,
Kurrat
,
M.
, and
Raatz
,
A.
,
2011
, “
Disassembly Automation for Lithium-Ion Battery Systems Using a Flexible Gripper
,”
Proceedings of the 15th International Conference on Advanced Robotics (ICAR)
,
IEEE
, pp.
291
297
.
32.
Borras
,
J.
,
Heudorfer
,
R.
,
Rader
,
S.
,
Kaiser
,
P.
, and
Asfour
,
T.
,
2018
, “
The KIT Swiss Knife Gripper
for
Disassembly Tasks: a Multi-Functional Gripper for Bimanual Manipulation With a Single Arm
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
, pp.
4590
4597
.
33.
Wegener
,
K.
,
Chen
,
W. H.
,
Dietrich
,
F.
, and
Kara
,
S.
,
2015
, “
Robot Assisted Disassembly for the Recycling of Electric Vehicle Batteries
,”
Procedia CIRP
,
29
, pp.
716
721
.
34.
Weyrich
,
M.
, and
Natkunarajah
,
N.
,
2013
,
Conception of an Automated Plant for the Disassembly of Lithium Ion Batteries
,
Germany, Paul-Bonatz-Str
,
9
11
.
35.
Chang
,
M. M. L.
,
Ong
,
S. K.
, and
Nee
,
A. Y. C.
,
2017
, “
AR-Guided Product Disassembly for Maintenance and Remanufacturing
,”
Procedia CIRP
,
61
, pp.
299
304
.
36.
Schäfer
,
J.
,
Singer
,
R.
,
Hofmann
,
J.
, and
Fleischer
,
J.
,
2020
, “
Challenges and Solutions of Automated Disassembly and Condition-Based Remanufacturing of Lithium-Ion Battery Modules for a Circular Economy
,”
Procedia Manuf.
,
43
, pp.
614
619
.
37.
Pinsky
,
N.
,
1998
,
Electric Vehicle Battery 2nd Use Study
,
Argonne National Lab.
38.
Cready
,
E.
,
Lippert
,
J.
,
Pihl
,
J.
,
Weinstock
,
I.
, and
Symons
,
P.
,
2003
,
Technical and Economic Feasibility of Applying Used EV Batteries in Stationary Applications
,
Sandia National Labs
.
39.
Neubauer
,
J.
,
Smith
,
K.
,
Wood
,
E.
, and
Pesaran
,
A.
,
2015
,
Identifying and Overcoming Critical Barriers to Widespread Second Use of PEV Batteries
,
National Renewable Energy Laboratory
.
40.
U.S. Advanced Battery Consortium LLC
,
Electric Vehicle Battery Test Procedures Manual: Revision 2
,
USABC, National Laboratories
, http://www.uscar.org/guest/index.php
41.
Feng
,
F.
,
Hu
,
X.
,
Hu
,
L.
,
Li
,
Y.
, and
Zhang
,
L.
,
2019
, “
Propagation Mechanisms and Diagnosis of Parameter Inconsistency Within Li-Ion Battery Packs
,”
Renewable Sustainable Energy Rev.
,
112
, pp.
102
113
.
42.
Tong
,
S.
, and
Klein
,
M.
,
2014
, “
Second Life battery Pack as Stationary Energy Storage for Smart Grid
,”
SAE Technical Paper
.
43.
Gogoana
,
R.
,
Pinson
,
M. B.
,
Bazant
,
M. Z.
, and
Sarma
,
S. E.
,
2014
, “
Internal Resistance Matching for Parallel-Connected Lithium-Ion Cells and Impacts on Battery Pack Cycle Life
,”
J. Power Sources
,
252
, pp.
8
13
.
44.
Chen
,
H.
, and
Shen
,
J.
,
2017
, “
A Degradation-Based Sorting Method for Lithium-Ion Battery Reuse
,”
PLoS One
,
12
(
10
), p.
e0185922
.
45.
Li
,
H.
, and
Zhou
,
Z.
,
2019
, “
Numerical Simulation and Experimental Study of Fluid-Solid Coupling-Based Air-Coupled Ultrasonic Detection of Stomata Defect of Lithium-Ion Battery
,”
Sensors
,
19
(
10
), p.
2391
.
46.
Chang
,
L.
,
Wang
,
C.
,
Zhang
,
C.
,
Xiao
,
L.
,
Cui
,
N.
,
Li
,
H.
, and
Qiu
,
J.
,
2020
, “
A Novel Fast Capacity Estimation Method Based on Current Curves of Parallel-Connected Cells for Spent Lithium-Ion Batteries in Second-Use Applications
,”
J. Power Sources
,
459
, p.
227901
.
47.
Jiang
,
Y.
,
Jiang
,
J.
,
Zhang
,
C.
,
Zhang
,
W.
,
Gao
,
Y.
, and
Li
,
N.
,
2018
, “
State of Health Estimation of Second-Life LiFePO4 Batteries for Energy Storage Applications
,”
J. Cleaner Prod.
,
205
, pp.
754
762
.
48.
Weng
,
C.
,
Feng
,
X.
,
Sun
,
J.
, and
Peng
,
H.
,
2016
, “
State-of-Health Monitoring of Lithium-ion Battery Modules and Packs via Incremental Capacity Peak Tracking
,”
Appl. Energy
,
180
, pp.
360
368
.
49.
Groot
,
J.
,
2012
,
State-of-Health Estimation of Li-Ion Batteries: Cycle Life Test Methods
,
Göteborg, Sweden
.
50.
Feng
,
X.
,
Li
,
J.
,
Ouyang
,
M.
,
Lu
,
L.
,
Li
,
J.
, and
He
,
X.
,
2013
, “
Using Probability Density Function to Evaluate the State of Health of Lithium-Ion Batteries
,”
J. Power Sources
,
232
(
18
), pp.
209
218
.
51.
Liao
,
Q.
,
Mu
,
M.
,
Zhao
,
S.
,
Zhang
,
L.
,
Jiang
,
T.
,
Ye
,
J.
,
Shen
,
X.
, and
Zhou
,
G.
,
2017
, “
Performance Assessment and Classification of Spent Lithium Ion Battery From Electric Vehicles for Energy Storage
,”
Int. J. Hydrogen Energy
,
42
(
30
), pp.
18817
18823
.
52.
Sutherland
,
J.
,
Skerlos
,
S. J.
,
Haapala
,
K. R.
,
Cooper
,
D.
,
Zhao
,
F.
, and
Huang
,
A.
,
2020
, “
Industrial Sustainability: Reviewing the Past and Envisioning the Future
,”
ASME J. Manuf. Sci. Eng.
,
142
(
11
), p.
110806
.
53.
Blomsma
,
F.
, and
Tennant
,
M.
,
2020
, “
Circular Economy: Preserving Materials or Products? Introducing the Resource States Framework
,”
Resour. Conserv. Recycl.
,
156
, p.
104698
.
54.
Reid
,
G.
, and
Julve
,
J.
,
2016
,
Second Life-Batteries as Flexible Storage for Renewables Energies
,
Bundesverband Erneuerbare Energie e.V
,
Hannover
.
55.
Neubauer
,
J.
,
Pesaran
,
A.
,
Williams
,
B.
,
Ferry
,
M.
, and
Eyer
,
J.
,
2012
,
A Techno-Economic Analysis of PEV Battery Second Use: Repurposed-Battery Selling Price and Commercial and Industrial End-User Value
, SAE Technical Papers,
SAE International
.
56.
Heymans
,
C.
,
Walker
,
S. B.
,
Young
,
S. B.
, and
Fowler
,
M.
,
2014
, “
Economic Analysis of Second Use Electric Vehicle Batteries for Residential Energy Storage and Load-Levelling
,”
Energy Policy
,
71
, pp.
22
30
.
57.
Rohr
,
S.
,
Wagner
,
S.
,
Baumann
,
M.
,
Muller
,
S.
, and
Lienkamp
,
M.
,
2017
, “
A Techno-Economic Analysis of end of Life Value Chains for Lithium-ion Batteries From Electric Vehicles
,”
Proceedings of the 12th International Conference on Ecological Vehicles and Renewable Energies (EVER)
,
Monte Carlo, Monaco
,
Apr. 11–13, 2017
, pp.
1
14
.
58.
Der Stelt
,
S. V.
,
Alskaif
,
T.
, and
Van Sark
,
W.
,
2018
, “
Techno-economic Analysis of Household and Community Energy Storage for Residential Prosumers with Smart Appliances
,”
Appl. Energy
,
209
, pp.
266
276
.
59.
Burtt
,
D.
, and
Dargusch
,
P.
,
2015
, “
The Cost-Effectiveness of Household Photovoltaic Systems in Reducing Greenhouse Gas Emissions in Australia: Linking Subsidies With Emission Reductions
,”
Appl. Energy
,
148
, pp.
439
448
.
60.
Assuncao
,
A.
,
Moura
,
P.
, and
De Almeida
,
A. T.
,
2016
, “
Technical and Economic Assessment of the Secondary Use of Repurposed Electric Vehicle Batteries in the Residential Sector to Support Solar Energy
,”
Appl. Energy
,
181
, pp.
120
131
.
61.
Barbour
,
E.
, and
Gonzalez
,
M. C.
,
2018
, “
Projecting Battery Adoption in The Prosumer Era
,”
Appl. Energy
,
215
, pp.
356
370
.
62.
Agamah
,
S. U.
, and
Ekonomou
,
L.
,
2017
, “
A Heuristic Combinatorial Optimization Algorithm for Load-Leveling and Peak Demand Reduction Using Energy Storage Systems
,”
Electr. Power Compon. Syst.
,
45
(
19
), pp.
2093
2103
.
63.
Bai
,
B.
,
Xiong
,
S.
,
Song
,
B.
, and
Xiaoming
,
M.
,
2019
, “
Economic Analysis of Distributed Solar Photovoltaics With Reused Electric Vehicle Batteries as Energy Storage Systems in China
,”
Renewable Sustainable Energy Rev.
,
109
, pp.
213
229
.
64.
Bobba
,
S.
,
Mathieux
,
F.
, and
Blengini
,
G. A.
,
2019
, “
How Will Second-Use of Batteries Affect Stocks and Flows in the EU? A Model for Traction Li-Ion Batteries
,”
Resour., Conserv. Recycl.
,
145
, pp.
279
291
.
65.
Song
,
Z.
,
Feng
,
S.
,
Zhang
,
L.
,
Hu
,
Z.
,
Hu
,
X.
, and
Yao
,
R.
,
2019
, “
Economy Analysis of Second-Life Battery in Wind Power Systems Considering Battery Degradation in Dynamic Processes: Real Case Scenarios
,”
Appl. Energy
,
251
, p.
113411
.
66.
Sun
,
S. I.
,
Chipperfield
,
A. J.
,
Kiaee
,
M.
, and
Wills
,
R. G.
,
2018
, “
Effects of Market Dynamics on the Time-Evolving Price of Second-Life Electric Vehicle Batteries
,”
J. Energy Storage
,
19
, pp.
41
51
.
67.
Alfaro-Algaba
,
M.
, and
Ramirez
,
F. J.
,
2020
, “
Techno-Economic and Environmental Disassembly Planning of Lithium-Ion Electric Vehicle Battery Packs for Remanufacturing
,”
Resour., Conserv. Recycl.
,
154
, p.
104461
.
68.
Ahmadi
,
L.
,
Young
,
S. B.
,
Fowler
,
M.
,
Fraser
,
R. A.
, and
Achachilouei
,
M. A.
,
2017
, “
A Cascaded Life Cycle: Reuse of Electric Vehicle Lithium-Ion Battery Packs in Energy Storage Systems
,”
Int. J. Life Cycle Assess
,
22
, pp.
111
124
.
69.
Casals
,
L. C.
,
Garcia
,
B. A.
,
Aguesse
,
F.
, and
Iturrondobeitia
,
A.
,
2017
, “
Second Life of Electric Vehicle Batteries: Relation Between Materials Degradation and Environmental Impact
,”
Int. J. Life Cycle Assess
,
22
(
1
), pp.
82
93
.
70.
Oliveira
,
L. F.
,
Messagie
,
M.
,
Mertens
,
J.
,
Laget
,
H.
,
Coosemans
,
T.
, and
Van Mierlo
,
J.
,
2015
, “
Environmental Performance of Electricity Storage Systems for Grid Applications, a Life Cycle Approach
,”
Energy Convers. Manage.
,
101
, pp.
326
335
.
71.
Schulz
,
M.
,
Bey
,
N.
,
Niero
,
M.
, and
Hauschild
,
M.
,
2020
, “
Circular Economy Considerations in Choices of LCA Methodology: How to Handle EV Battery Repurposing?
,”
Procedia CIRP
,
90
, pp.
182
186
.
72.
Cusenza
,
M. A.
,
Guarino
,
F.
,
Longo
,
S.
,
Ferraro
,
M.
, and
Cellura
,
M.
,
2019
, “
Energy and Environmental Benefits of Circular Economy Strategies: The Case Study of Reusing Used Batteries From Electric Vehicles
,”
J. Energy Storage
,
25
, p.
100845
.
73.
Kamath
,
D.
,
Arsenault
,
R.
,
Kim
,
H. C.
, and
Anctil
,
A.
,
2020
, “
Economic and Environmental Feasibility of Second-Life Lithium-Ion Batteries as Fast Charging Energy Storage
,”
Environ. Sci. Technol.
,
54
(
11
), pp.
6878
6887
.
74.
Du
,
Z.
,
Lin
,
B.
, and
Guan
,
C.
,
2019
, “
Development Path of Electric Vehicles in China Under Environmental and Energy Security Constraints
,”
Resour. Conserv. Recycl.
,
143
, pp.
17
26
.
75.
Qiao
,
Q.
,
Zhao
,
F.
,
Liu
,
Z.
, and
Hao
,
H.
,
2019
, “
Electric Vehicle Recycling in China: Economic and Environmental Benefits
,”
Resour., Conserv. Recycl.
,
140
, pp.
45
53
.
76.
Yang
,
J.
,
Gu
,
F.
, and
Guo
,
J.
,
2020
, “
Environmental Feasibility of Secondary Use of Electric Vehicle Lithium-Ion Batteries in Communication Base Stations
,”
Resour., Conserv. Recycl.
,
156
, p.
104713
.
77.
Gur
,
K.
,
Chatzikyriakou
,
D.
,
Baschet
,
C.
, and
Salomon
,
M.
,
2018
, “
The Reuse of Electrified Vehicle Batteries as a Means of Integrating Renewable Energy Into the European Electricity Grid: A Policy and Market Analysis
,”
Energy Policy
,
113
, pp.
535
545
.
78.
Tang
,
Y.
,
Zhang
,
Q.
,
Li
,
Y.
,
Wang
,
G.
, and
Li
,
Y.
,
2018
, “
Recycling Mechanisms and Policy Suggestions for Spent Electric Vehicles’ Power Battery—A Case of Beijing
,”
J. Cleaner Prod.
,
186
, pp.
388
406
.
79.
Kantor
,
I.
,
Rowlands
,
I. H.
,
Parker
,
P.
, and
Lazowski
,
B.
, “
Economic Feasibility of Residential Electricity Storage Systems in Ontario, Canada Considering Two Policy Scenarios
,”
Energy Build.
,
86
, pp.
222
232
.
80.
Tang
,
Y.
,
Zhang
,
Q.
,
Li
,
Y.
,
Li
,
H.
,
Pan
,
X.
, and
Mclellan
,
B.
,
2019
, “
The Social-Economic-Environmental Impacts of Recycling Spent EV Batteries Under Reward-Penalty Mechanism
,”
Appl. Energy
,
251
, p.
113313
.
81.
Li
,
S.
,
Liu
,
Y.
,
Wang
,
J.
, and
Zhang
,
L.
,
2016
, “
China’s New Energy Vehicle Industry Development Policy: Based on the Market Performance
,”
China Popul. Resour. Environ.
,
26
(
09
), pp.
158
166
.
82.
Li
,
J.
,
Qiao
,
Z.
,
Simeone
,
A.
,
Bao
,
J.
, and
Zhang
,
Y.
,
2020
, “
An Activity Theory-Based Analysis Approach for End-of-Use Management of Electric Vehicle Batteries
,”
Resour., Conserv. Recycl.
,
162
, p.
105040
.
83.
Lee
,
M. H.
, and
Chang
,
D.
,
2016
, “
Allocative Efficiency of High-Power Li-Ion Batteries From Automotive Mode (AM) to Storage Mode (SM)
,”
Renewable Sustainable Energy Rev.
,
64
, pp.
60
67
.
84.
He
,
G.
,
Ciez
,
R. E.
,
Chen
,
Q.
,
Moutis
,
P.
,
Kar
,
S.
, and
Whitacre
,
J.
,
2018
, “
The Economic End of Life of Electrochemical Energy Storage
,”
Appl. Energy
,
273
, p.
115151
.
85.
Ai
,
N.
,
Zheng
,
J.
, and
Chen
,
W. Q.
,
2019
, “
US End-of-Use Electric Vehicle Batteries: Dynamic Inventory Modeling and Spatial Analysis for Regional Solutions
,”
Resour. Conserv. Recycl.
,
145
, pp.
208
219
.
86.
Moore
,
E. A.
,
Russell
,
J. D.
,
Babbitt
,
C. W.
,
Tomaszewski
,
B.
, and
Clark
,
S. S.
,
2020
, “
Spatial Modeling of a Second-Use Strategy for Electric Vehicle Batteries to Improve Disaster Resilience and Circular Economy
,”
Resour., Conserv. Recycl.
,
160
, p.
104889
.
87.
Chiang
,
Y.
,
Sean
,
W.
, and
Jeong
,
S.
,
2019
, “
Current Control of Energy Management System by Applying Ultracapacitor With Boost Converter Interface for Reused Lithium-Ion Battery
,”
J. Cleaner Prod.
,
220
, pp.
945
952
.
88.
Kosenko
,
R.
,
Chub
,
A.
, and
Blinov
,
A.
,
2016
, “
Full-Soft-Switching High Step-up Bidirectional Isolated Current-fed Push-Pull DC-DC Converter for Battery Energy Storage Applications
,”
Conference of the Industrial Electronics Society
.
89.
Agnew
,
S.
, and
Dargusch
,
P.
,
2017
, “
Consumer Preferences for Household-Level Battery Energy Storage
,”
Renewable Sustainable Energy Rev.
,
75
, pp.
609
617
.
90.
Alskaif
,
T.
,
Lampropoulos
,
I.
,
Den Broek
,
M. V.
, and
Van Sark
,
W.
,
2018
, “
Gamification-Based Framework for Engagement of Residential Customers in Energy Applications
,”
Energy Res. Soc. Sci.
,
44
, pp.
187
195
.
91.
Kalkbrenner
,
B. J.
,
2019
, “
Residential vs. Community Battery Storage Systems—Consumer Preferences in Germany
,”
Energy Policy
,
129
(
129
), pp.
1355
1363
.
92.
Priessner
,
A.
, and
Hampl
,
N.
,
2020
, “
Can Product Bundling Increase the Joint Adoption of Electric Vehicles, Solar Panels and Battery Storage? Explorative Evidence From a Choice-Based Conjoint Study in Austria
,”
Ecol. Econ.
,
167
, p.
106381
.
93.
Jiao
,
N.
, and
Evans
,
S.
,
2016
, “
Business Models for Sustainability: The Case of Second-Life Electric Vehicle Batteries
,”
Procedia CIRP
, pp.
250
255
.
94.
Brauer
,
S.
,
Monhof
,
M.
,
Klor
,
B.
,
Plenter
,
F.
,
Beverungen
,
D.
, and
Siemen
,
C.
,
2016
, “
Residential Energy Storage From Repurposed Electric Vehicle Batteries: Market Overview and Development
of
a Service-Centered Business Model
,”
IEEE Conference on Business Informatics
.
95.
Evans
,
S.
,
Vladimirova
,
D.
,
Holgado
,
M.
,
Van Fossen
,
K.
,
Yang
,
M.
,
Silva
,
E.
, and
Barlow
,
C. Y.
,
2017
, “
Business Model Innovation for Sustainability: Towards a Unified Perspective for Creation of Sustainable Business Models
,”
Bus. Strategy Environ.
,
26
, pp.
597
608
.
96.
Li
,
X.
,
Mu
,
D.
,
Du
,
J.
,
Cao
,
J.
, and
Zhao
,
F.
,
2020
, “
Game-Based System Dynamics Simulation of Deposit-Refund Scheme for Electric Vehicle Battery Recycling in China
,”
Resour. Conserv. Recycl.
,
157
, p.
104788
.
97.
Klör
,
B.
,
Beverungen
,
D.
,
Bräuer
,
S.
,
Plenter
,
F.
, and
Monhof
,
M.
,
2015
, “
A Market for Trading Used Electric Vehicle Batteries—Theoretical Foundations and Information Systems
,”
Proceedings of the 23rd European Conference on Information System (ECIS)
,
Münster, Germany
,
May 26–29, 2015
, pp.
1
18
.
98.
Rehme
,
M.
,
Richter
,
S.
,
Temmler
,
A.
, and
Götze
,
U.
,
2016
, “
Second-Life Battery Applications—Market Potentials and Contribution to the Cost Effectiveness of Electric Vehicles
,”
Proceedings of the 5th Conference on Future Automotive Technology (COFAT)
,
Fürstenfeld, Germany
,
May 3–4
. http://dx.doi.org/10.13140/RG.2.2.35238.93760
99.
Bocken
,
N. M. P.
,
de Pauw
,
I.
,
Bakker
,
C.
, and
van der Grinten
,
B.
,
2016
, “
Product Design and Business Model Strategies for a Circular Economy
,”
J. Ind. Prod. Eng.
,
33
, pp.
308
320
.
100.
Tang
,
Y.
,
Zhang
,
Q.
,
Mclellan
,
B.
, and
Li
,
H.
,
2018
, “
Study on the Impacts of Sharing Business Models on Economic Performance of Distributed PV-Battery Systems
,”
Energy
,
161
, pp.
544
558
.
101.
Bakker
,
C. A.
,
den Hollander
,
M. C.
,
van Hinte
,
E.
, and
Zijlstra
,
Y.
,
2014
,
Products That Last—Product Design for Circular Business Models
,
TU Delft Library
,
Delft
.
102.
Mossali
,
E.
,
Gentilini
,
L.
,
Merati
,
G.
, and
Colledani
,
M.
,
2020
, “
Methodology and Application of Electric Vehicles Battery Packs Redesign for Circular Economy
,”
Procedia CIRP
,
91
, pp.
747
751
.
103.
Altavilla
,
S.
, and
Montagna
,
F.
,
2019
, “
A Product Architecture-Based Framework for a Data-Driven Estimation of Lifecycle Cost
,”
ASME J. Manuf. Sci. Eng.
,
141
(
5
), p.
051007
.
104.
Hu
,
Y.
, and
Ameta
,
G.
,
2019
, “
A Charts-Based Approach to Estimate Disassembly Time: Hypothesis, Model and Validation
,”
ASME J. Manuf. Sci. Eng.
,
141
(
2
), p.
021009
.
105.
Li
,
J.
,
Wang
,
G.
, and
Xu
,
Z.
,
2016
, “
Generation and Detection of Metal Ions and Volatile Organic Compounds (VOCs) Emissions From the Pretreatment Processes for Recycling Spent Lithium-Ion Batteries
,”
Waste Manage.
,
52
(
6
), pp.
221
227
.
106.
Mi
,
L.
,
Zhang
,
H.
,
Wang
,
B.
,
Zheng
,
X.
, and
Dai
,
C.
,
2013
, “
The Re-Synthesis of LiCoO2 From Spent Lithium Ion Batteries Separated by Vacuum-Assisted Heat-Treating Method
,”
Int. J. Electrochem. Sci.
,
8
(
6
), pp.
8201
8209
.
107.
Ojanen
,
S.
,
Lundstr M
,
M.
,
Santasalo-Aarnio
,
A.
, and
Serna-Guerrero
,
R.
,
2018
, “
Challenging the Concept of Electrochemical Discharge Using Salt Solutions for Lithium-Ion Batteries Recycling
,”
Waste Manag.
,
76
(
6
), pp.
242
249
.
108.
Shaw-Stewart
,
J.
,
Alvarez-Reguera
,
A.
,
Greszta
,
A.
,
Marco
,
J.
,
Masood
,
M.
,
Sommerville
,
R.
, and
Kendrick
,
E.
,
2019
, “
Aqueous Solution Discharge of Cylindrical Lithium-Ion Cells
,”
Sustainable Mater. Technol.
,
22
, p.
e00110
.
109.
Shin
,
S. M.
,
Kim
,
N. H.
,
Sohn
,
J. S.
,
Dong
,
H. Y.
, and
Kim
,
Y. H.
,
2005
, “
Development of a Metal Recovery Process From Li-Ion Battery Wastes
,”
Hydrometallurgy
,
79
(
3–4
), pp.
172
181
.
110.
Zhang
,
J.
,
Hu
,
J.
,
Liu
,
Y.
,
Jing
,
Q.
,
Yang
,
C.
,
Chen
,
Y.
, and
Wang
,
C.
,
2019
, “
Sustainable and Facile Method for the Selective Recovery of Lithium From Cathode Scrap of Spent LiFePO4 Batteries
,”
ACS Sustainable Chem. Eng.
,
7
(
6
), pp.
5626
5631
.
111.
Zhang
,
G.
,
He
,
Y.
,
Feng
,
Y.
,
Wang
,
H.
,
Zhang
,
T.
,
Xie
,
W.
, and
Zhu
,
X.
,
2018
, “
Enhancement in Liberation of Electrode Materials Derived From Spent Lithium-Ion Battery by Pyrolysis
,”
J. Cleaner Prod.
,
199
(
PT.1-1130
), pp.
62
68
.
112.
Wang
,
L.
,
Jian
,
L.
,
Zhou
,
H.
,
Huang
,
Z.
,
Tao
,
S.
,
Zhai
,
B.
,
Liu
,
L.
, and
Hu
,
L.
,
2018
, “
Regeneration Cathode Material Mixture From Spent Lithium Iron Phosphate Batteries
,”
J. Mater. Sci.: Mater. Electron.
,
29
(
11
), pp.
1
8
.
113.
Tao
,
Z.
,
He
,
Y.
,
Wang
,
F.
,
Ge
,
L.
,
Zhu
,
X.
, and
Li
,
H.
,
2014
, “
Chemical and Process Mineralogical Characterizations of Spent Lithium-Ion Batteries: An Approach by Multi-Analytical Techniques
,”
Waste Manage.
,
34
(
6
), pp.
1051
1058
.
114.
Yang
,
Y.
,
Zheng
,
X.
,
Zhao
,
C.
,
Lin
,
X.
,
Cao
,
H.
,
Ning
,
P.
,
Zhang
,
Y.
,
Jin
,
W.
, and
Sun
,
Z.
,
2017
, “
A Closed-Loop Process for Selective Metal Recovery From Spent Lithium Iron Phosphate Batteries Through Mechanochemical Activation
,”
ACS Sustainable Chem. Eng.
,
5
(
11
), pp.
9972
9980
.
115.
Wang
,
M. M.
,
Tan
,
Q. Y.
,
Liu
,
L. L.
, and
Li
,
J. H.
,
2021
, “
Selective Regeneration of Lithium From Spent Lithium-Ion Batteries Using Ionic Substitution Stimulated by Mechanochemistry
,”
J. Cleaner Prod.
,
279
, p.
123612
.
116.
Rothermel
,
S.
,
Evertz
,
M.
,
Kasnatscheew
,
J.
,
Qi
,
X.
,
Grützke
,
M.
,
Winter
,
M.
, and
Nowak
,
S.
,
2016
, “
Graphite Recycling From Spent Lithium-Ion Batteries
,”
ChemSusChem
,
9
(
24
), pp.
3473
3484
.
117.
Grützke
,
M.
,
Kraft
,
V.
,
Weber
,
W.
,
Wendt
,
C.
,
Friesen
,
A.
,
Klamor
,
S.
,
Winter
,
M.
, and
Nowak
,
S.
,
2014
, “
Supercritical Carbon Dioxide Extraction of Lithium-Ion Battery Electrolytes
,”
J. Supercrit. Fluids
,
94
, pp.
216
222
.
118.
Natarajan
,
S.
,
Lakshmi
,
D. S.
,
Bajaj
,
H. C.
, and
Srivastava
,
D. N.
,
2015
, “
Recovery and Utilization of Graphite and Polymer Materials From Spent Lithium-Ion Batteries for Synthesizing Polymer–Graphite Nanocomposite Thin Films
,”
J. Environ. Chem. Eng.
,
3
(
4
), pp.
2538
2545
.
119.
Liu
,
Y.
,
Mu
,
D.
,
Dai
,
Y.
,
Ma
,
Q.
,
Zheng
,
R.
, and
Dai
,
C.
,
2016
, “
Analysis on Extraction Behaviour of Lithium-Ion Battery Electrolyte Solvents in Supercritical CO2 by Gas Chromatography
,”
Int. J. Electrochem. Sci.
,
11
, pp.
7594
7604
.
120.
Zhang
,
Y.
,
Guo
,
X.
,
Yao
,
Y.
,
Wu
,
F.
,
Zhang
,
C.
,
Chen
,
R.
, and
Amine
,
K.
,
2016
, “
Mg-Enriched Engineered Carbon From Lithium-Ion Battery Anode for Phosphate Removal
,”
ACS Appl. Mater. Interfaces
,
8
(
5
), pp.
2905
2909
.
121.
Müller
,
R.
,
Zanotto
,
E. D.
, and
Fokin
,
V. M.
,
2000
, “
Surface Crystallization of Silicate Glasses: Nucleation Sites and Kinetics
,”
J. Non-Cryst. Solids
,
274
(
1–3
), pp.
208
231
.
122.
Assefi
,
M.
,
Maroufi
,
S.
,
Yamauchi
,
Y.
, and
Sahajwalla
,
V.
,
2020
, “
Pyrometallurgical Recycling of Li-Ion, Ni-Cd and Ni-MH Batteries: A Mini-Review
,”
Curr. Opin. Green Sustain. Chem.
,
24
, pp.
26
31
.
123.
Xiao
,
S.
,
Ren
,
G.
,
Xie
,
M.
,
Pan
,
B.
,
Fan
,
Y.
,
Wang
,
F.
, and
Xia
,
X.
,
2017
, “
Recovery of Valuable Metals From Spent Lithium-Ion Batteries by Smelting Reduction Process Based on MnO–SiO2–Al2O3 Slag System
,”
J. Sustain. Metall.
,
3
, pp.
703
710
.
124.
Maroufi
,
S.
,
Assefi
,
M.
,
Nekouei
,
R. K.
, and
Sahajwalla
,
V.
,
2020
, “
Recovery of Lithium and Cobalt From Waste Lithium-Ion Batteries Through a Selective Isolation-Suspension Approach
,”
Sustainable Mater. Technol.
,
23
, pp.
2
6
.
125.
Wang
,
W.
,
Han
,
Y.
,
Zhang
,
T.
,
Zhang
,
L.
, and
Xu
,
S.
,
2019
, “
Alkali Metal Salt Catalyzed Carbothermic Reduction for Sustainable Recovery of LiCoO2: Accurately Controlled Reduction and Efficient Water Leaching
,”
ACS Sustainable Chem. Eng.
,
7
, pp.
16729
16737
.
126.
Lombardo
,
G.
,
Ebin
,
B.
,
St Foreman
,
M. R. J.
,
Steenari
,
B. M.
, and
Petranikova
,
M.
,
2019
, “
Chemical Transformations in Li-Ion Battery Electrode Materials by Carbothermic Reduction
,”
ACS Sustainable Chem. Eng.
,
7
, pp.
13668
13679
.
127.
Xiao
,
J.
,
Li
,
J.
, and
Xu
,
Z.
,
2017
, “
Novel Approach for In Situ Recovery of Lithium Carbonate From Spent Lithium Ion Batteries Using Vacuum Metallurgy
,”
Environ. Sci. Technol.
,
51
, pp.
11960
11966
.
128.
Xiao
,
J.
,
Li
,
J.
, and
Xu
,
Z.
,
2017
, “
Recycling Metals From Lithium Ion Battery by Mechanical Separation and Vacuum Metallurgy
,”
J. Hazard. Mater.
,
338
, pp.
124
131
.
129.
Wang
,
W.
,
Zhang
,
Y.
,
Liu
,
X.
, and
Xu
,
S.
,
2019
, “
A Simplified Process for Recovery of Li and Co From Spent LiCoO2 Cathode Using Al Foil as the In Situ Reductant
,”
ACS Sustainable Chem. Eng.
,
7
, pp.
12222
12230
.
130.
Wang
,
D.
,
Zhang
,
X.
,
Chen
,
H.
, and
Sun
,
J.
,
2018
, “
Separation of Li and Co From the Active Mass of Spent Li-Ion Batteries by Selective Sulfating Roasting With Sodium Bisulfate and Water Leaching
,”
Miner. Eng.
,
126
, pp.
28
35
.
131.
Dang
,
H.
,
Wang
,
B.
,
Chang
,
Z.
,
Wu
,
X.
,
Feng
,
J.
,
Zhou
,
H.
,
Li
,
W.
, and
Sun
,
C.
,
2018
, “
Recycled Lithium From Simulated Pyrometallurgical Slag by Chlorination Roasting
,”
ACS Sustainable Chem. Eng.
,
6
, pp.
13160
13167
.
132.
Peng
,
C.
,
Liu
,
F.
,
Wang
,
Z.
,
Wilson
,
B. P.
, and
Lundström
,
M.
,
2019
, “
Selective Extraction of Lithium (Li) and Preparation of Battery Grade Lithium Carbonate (Li2CO3) From Spent Li-Ion Batteries in Nitrate System
,”
J. Power Sources
,
415
, pp.
179
188
.
133.
Fan
,
E.
,
Li
,
L.
,
Lin
,
J.
,
Wu
,
J.
,
Yang
,
J.
,
Wu
,
F.
, and
Chen
,
R.
,
2019
, “
Low-Temperature Molten-Salt-Assisted Recovery of Valuable Metals From Spent Lithium-Ion
,”
ACS Sustainable Chem. Eng.
, pp.
16144
16150
.
134.
Georgi-Maschler
,
T.
,
Friedrich
,
B.
,
Weyhe
,
R.
,
Heegn
,
H.
, and
Rutz
,
M.
,
2012
, “
Development of a Recycling Process for Li-Ion Batteries
,”
J. Power Sources
,
207
(
1
), pp.
173
182
.
135.
Ren
,
G. X.
,
Xiao
,
S. W.
,
Xie
,
M. Q.
,
Pan
,
B.
,
Chen
,
J.
,
Wang
,
F. G.
, and
Xia
,
X.
,
2017
, “
Recovery of Valuable Metals From Spent Lithium Ion Batteries by Smelting Reduction Process Based on FeO–SiO2 –Al2O3 Slag System
,”
Trans. Nonferrous Met. Soc. China
,
27
(
2
), pp.
450
456
.
136.
Etacheri
,
V.
,
Marom
,
R.
,
Elazari
,
R.
,
Salitra
,
G.
, and
Aurbach
,
D.
,
2011
, “
Challenges in the Development of Advanced Li-Ion Batteries: A Review
,”
Energy Environ. Sci.
,
4
(
9
), pp.
3243
3262
.
137.
Huang
,
B.
,
Li
,
X.
,
Wang
,
Z.
,
Guo
,
H.
,
Li
,
S.
, and
Wang
,
J.
,
2014
, “
A Comprehensive Study on Electrochemical Performance of Mn-Surface-Modified LiNi0.8Co0.15Al0.05O2 Synthesized by an In Situ Oxidizing-Coating Method
,”
J. Power Sources
,
252
(
15
), pp.
200
207
.
138.
Swain
,
B.
,
2017
, “
Recovery and Recycling of Lithium: A Review
,”
Sep. Purif. Technol.
,
172
, pp.
388
403
.
139.
Garcia
,
E. M.
,
Santos
,
J. S.
,
Pereira
,
E. C.
, and
Freitas
,
M.
,
2008
, “
Electrodeposition of Cobalt From Spent Li-Ion Battery Cathodes by the Electrochemistry Quartz Crystal Microbalance Technique
,”
J. Power Sources
,
185
(
1
), pp.
549
553
.
140.
Granata
,
G.
,
Moscardini
,
E.
,
Pagnanelli
,
F.
,
Trabucco
,
F.
, and
Toro
,
L.
,
2012
, “
Product Recovery From Li-Ion Battery Wastes Coming From an Industrial Pre-Treatment Plant: Lab Scale Tests and Process Simulations
,”
J. Power Sources
,
206
(
15
), pp.
393
401
.
141.
Liang
,
S.
, and
Qiu
,
K.
,
2011
, “
Vacuum Pyrolysis and Hydrometallurgical Process for the Recovery of Valuable Metals From Spent Lithium-Ion Batteries
,”
J. Hazard. Mater.
,
194
, pp.
378
384
.
142.
Chagnes
,
A.
, and
Pospiech
,
B.
,
2013
, “
A Brief Review on Hydrometallurgical Technologies for Recycling Spent Lithium-Ion Batteries
,”
J. Chem. Technol. Biotechnol.
,
88
(
7
), pp.
1191
1199
.
143.
Wang
,
Y.
,
An
,
N.
,
Wen
,
L.
,
Wang
,
L.
,
Jiang
,
X.
,
Hou
,
F.
, and
Liang
,
J.
,
2020
, “
Recent Progress on the Recycling Technology of Li-Ion Batteries
,”
J. Energy Chem.
,
55
, pp.
391
419
.
144.
Wang
,
W. Y.
,
Yen
,
C. H.
,
Lin
,
J. L.
, and
Xu
,
R. B.
,
2019
, “
Recovery of High-Purity Metallic Cobalt From Lithium Nickel Manganese Cobalt Oxide (NMC)-Type Li-Ion Battery
,”
J. Mater. Cycles Waste Manage.
,
21
(
2
), pp.
300
307
.
145.
Liu
,
P.
,
Xiao
,
L.
,
Chen
,
Y.
,
Tang
,
Y.
,
Wu
,
J.
, and
Chen
,
H.
,
2019
, “
Recovering Valuable Metals From LiNixCoyMn1-x-yO2 Cathode Materials of Spent Lithium Ion Batteries via a Combination of Reduction Roasting and Stepwise Leaching
,”
J. Alloys Compd.
,
783
, pp.
743
752
.
146.
Zhang
,
J.
,
Hu
,
J.
,
Zhang
,
W.
,
Chen
,
Y.
, and
Wang
,
C.
,
2018
, “
Efficient and Economical Recovery of Lithium, Cobalt, Nickel, Manganese From Cathode Scrap of Spent Lithium-Ion Batteries
,”
J. Cleaner Prod.
,
204
(
PT.1-1178
), pp.
437
446
.
147.
Vieceli
,
N.
,
Nogueira
,
C. A.
,
Guimarães
,
C.
,
Pereira
,
M. F. C.
,
Durão
,
F. O.
, and
Margarido
,
F.
,
2018
, “
Hydrometallurgical Recycling of Lithium-Ion Batteries by Reductive Leaching With Sodium Metabisulphite
,”
Waste Manag.
,
71
, pp.
350
361
.
148.
Lv
,
W.
,
Wang
,
Z.
,
Cao
,
H.
,
Zheng
,
X.
,
Jin
,
W.
, and
Zhang
,
Y.
,
2018
, “
A Sustainable Process for Metal Recycling From Spent Lithium-Ion Batteries Using Ammonium Chloride
,”
Waste Manag.
,
79
(
SEP.
), pp.
545
553
.
149.
Chen
,
W.
, and
Ho
,
H.
,
2018
, “
Recovery of Valuable Metals From Lithium-Ion Batteries NMC Cathode Waste Materials by Hydrometallurgical Methods
,”
Metals
,
8
(
5
), p.
321
.
150.
Billy
,
E.
,
Joulié
,
M.
,
Laucournet
,
R.
,
Boulineau
,
A.
,
Vito
,
E. D.
, and
Meyer
,
D.
,
2018
, “
Dissolution Mechanisms of LiNi1/3Mn1/3Co1/3O2 Positive Electrode Material From Lithium-Ion Batteries in Acid Solution
,”
ACS Appl. Mater. Interfaces
,
10
(
19
), pp.
16424
16435
.
151.
Nayl
,
A. A.
,
Elkhashab
,
R. A.
,
Badawy
,
S. M.
, and
El-Khateeb
,
M. A.
,
2014
, “
Acid Leaching of Mixed Spent Li-Ion Batteries
,”
Arab. J. Chem.
,
10
, pp.
S3632
S3639
.
152.
Hu
,
J.
,
Zhang
,
J.
,
Li
,
H.
,
Chen
,
Y.
, and
Wang
,
C.
,
2017
, “
A Promising Approach for the Recovery of High Value-Added Metals From Spent Lithium-Ion Batteries
,”
J. Power Sources
,
351
, pp.
192
199
.
153.
He
,
L.
,
Sun
,
S.
,
Song
,
X.
, and
Yu
,
J.
,
2017
, “
Leaching Process for Recovering Valuable Metals From the LiNi1/3Co1/3Mn1/3O2 Cathode of Lithium-Ion Batteries
,”
Waste Manage.
,
64
, pp.
171
181
.
154.
Yang
,
Y.
,
Huang
,
G.
,
Xu
,
S.
,
He
,
Y.
, and
Liu
,
X.
,
2016
, “
Thermal Treatment Process for the Recovery of Valuable Metals From Spent Lithium-Ion Batteries
,”
Hydrometallurgy
,
165
, pp.
390
396
.
155.
Meshram
,
P.
,
Pandey
,
B. D.
, and
Mankhand
,
T. R.
,
2015
, “
Hydrometallurgical Processing of Spent Lithium Ion Batteries (LIBs) in the Presence of a Reducing Agent With Emphasis on Kinetics of Leaching
,”
Chem. Eng. J.
,
281
, pp.
418
427
.
156.
Li
,
H.
,
Xing
,
S.
,
Liu
,
Y.
,
Li
,
F.
,
Guo
,
H.
, and
Kuang
,
G.
,
2017
, “
Recovery of Lithium, Iron, and Phosphorus From Spent LiFePO4 Batteries Using Stoichiometric Sulfuric Acid Leaching System
,”
ACS Sustainable Chem. Eng.
,
5
(
9
), pp.
8017
8024
.
157.
Zheng
,
R.
,
Zhao
,
L.
,
Wang
,
W.
,
Liu
,
Y.
,
Ma
,
Q.
,
Mu
,
D.
, and
Dai
,
C.
,
2016
, “
Optimized Li and Fe Recovery From Spent Lithium-Ion Batteries via a Solution-Precipitation Method
,”
RSC Adv.
,
6
(
49
), pp.
43613
43625
.
158.
Huang
,
Y.
,
Han
,
G.
,
Liu
,
J.
,
Chai
,
W.
,
Wang
,
W.
,
Yang
,
S.
, and
Su
,
S.
,
2016
, “
A Stepwise Recovery of Metals From Hybrid Cathodes of Spent Li-Ion Batteries With Leaching-Flotation-Precipitation Process
,”
J. Power Sources
,
325
, pp.
555
564
.
159.
Bian
,
D.
,
Sun
,
Y.
,
Li
,
S.
,
Tian
,
Y.
,
Yang
,
Z.
,
Fan
,
X.
, and
Zhang
,
W.
,
2016
, “
A Novel Process to Recycle Spent LiFePO4 for Synthesizing LiFePO4/C Hierarchical Microflowers
,”
Electrochim. Acta
,
190
, pp.
134
140
.
160.
Shin
,
E.
,
Kim
,
S.
,
Noh
,
J.
,
Byun
,
D.
,
Chung
,
K.
,
Kim
,
H.
, and
Cho
,
B.
,
2015
, “
A Green Recycling Process Designed for LiFePO4 Cathode Materials for Li-Ion Batteries
,”
J. Mater. Chem. A
,
3
(
21
), pp.
11493
11502
.
161.
Li
,
L.
,
Bian
,
Y.
,
Zhang
,
X.
,
Xue
,
Q.
,
Fan
,
E.
,
Wu
,
F.
, and
Chen
,
R.
,
2018
, “
Economical Recycling Process for Spent Lithium-ion Batteries and Macro- and Micro-Scale Mechanistic Study
,”
J. Power Sources
,
377
(
FEB.15
), pp.
70
79
.
162.
Gao
,
W.
,
Zhang
,
X.
,
Zheng
,
X.
,
Lin
,
X.
,
Cao
,
H.
,
Zhang
,
Y.
, and
Sun
,
Z.
,
2017
, “
Lithium Carbonate Recovery From Cathode Scrap of Spent Lithium-Ion Battery: A Closed-Loop Process
,”
Environ. Sci. Technol.
,
51
(
3
), pp.
1662
1669
.
163.
Li
,
L.
,
Fan
,
E.
,
Guan
,
Y.
,
Zhang
,
X.
,
Xue
,
Q.
,
Wei
,
L.
,
Wu
,
F.
, and
Chen
,
R.
,
2017
, “
Sustainable Recovery of Cathode Materials From Spent Lithium-Ion Batteries Using Lactic Acid Leaching System
,”
ACS Sustainable Chem. Eng.
,
5
(
6
), pp.
5224
5233
.
164.
Meng
,
Q.
,
Zhang
,
Y.
,
Dong
,
P.
, and
Liang
,
F.
,
2018
, “
A Novel Process for Leaching of Metals From LiNi1/3Co1/3Mn1/3O2 Material of Spent Lithium Ion Batteries: Process Optimization and Kinetics Aspects
,”
J. Ind. Eng. Chem.
,
66
, pp.
133
141
.
165.
Yao
,
L.
,
Yao
,
H.
,
Xi
,
G.
, and
Feng
,
Y.
,
2016
, “
Recycling and Synthesis of LiNi 1/3Co1/3Mn1/3O2 From Waste Lithium-Ion Batteries Using d, l-Malic Acid
,”
RSC Adv.
,
6
(
22
), pp.
17947
17954
.
166.
Zhang
,
X.
,
Bian
,
Y.
,
Xu
,
S.
,
Fan
,
E.
,
Xue
,
Q.
,
Guan
,
Y.
, and
Chen
,
R.
,
2018
, “
Innovative Application of Acid Leaching to Regenerate Li (Ni1/3Co1/3Mn1/3)O2 Cathodes From Spent Lithium-Ion Batteries
,”
ACS Sustainable Chem. Eng.
,
6
(
5
), pp.
5959
5968
.
167.
He
,
L. P.
,
Sun
,
S. Y.
,
Mu
,
Y. Y.
,
Song
,
X. F.
, and
Yu
,
J. G.
,
2017
, “
Recovery of Lithium, Nickel, Cobalt, and Manganese From Spent Lithium-Ion Batteries Using L-Tartaric Acid as a Leachant
,”
ACS Sustainable Chem. Eng.
,
5
(
1
), pp.
714
721
.
168.
He
,
L. P.
,
Sun
,
S. Y.
, and
Yu
,
J. G.
,
2018
, “
Performance of LiNi1/3Co1/3Mn1/3O2 Prepared From Spent Lithium-Ion Batteries by a Carbonate Co-Precipitation Method
,”
Ceram. Int.
,
44
(
1
), pp.
351
357
.
169.
Ren
,
J.
,
Zhang
,
Y.
,
Bai
,
W.
,
Chen
,
X.
,
Zhang
,
Z.
,
Fang
,
X.
, and
Peng
,
H.
,
2014
, “
Elastic and Wearable Wire-Shaped Lithium-ion Battery With High Electrochemical Performance
,”
Angew. Chem.
,
126
(
30
), pp.
7998
8003
.
170.
Li
,
L.
,
Bian
,
Y.
,
Zhang
,
X.
,
Guan
,
Y.
,
Fan
,
E.
,
Wu
,
F.
, and
Chen
,
R.
,
2018
, “
Process for Recycling Mixed-Cathode Materials From Spent Lithium-Ion Batteries and Kinetics of Leaching
,”
Waste Manage.
,
71
, pp.
362
371
.
171.
Zhang
,
X.
,
Cao
,
H.
,
Xie
,
Y.
,
Ning
,
P.
,
An
,
H.
,
You
,
H.
, and
Nawaz
,
F.
,
2015
, “
A Closed-Loop Process for Recycling LiNi1/3Co1/3Mn1/3O2 From the Cathode Scraps of Lithium-Ion Batteries: Process Optimization and Kinetics Analysis
,”
Sep. Purif. Technol.
,
150
, pp.
186
195
.
172.
Cai
,
G.
,
Fung
,
K.
,
Ng
,
K.
, and
Wibowo
,
C.
,
2014
, “
Process Development for the Recycle of Spent Lithium Ion Batteries by Chemical Precipitation
,”
Ind. Eng. Chem. Res.
,
53
(
47
), pp.
18245
18259
.
173.
Zhuang
,
L.
,
Sun
,
C.
,
Zhou
,
T.
,
Li
,
H.
, and
Dai
,
A.
,
2019
, “
Recovery of Valuable Metals From LiNi0. 5Co0. 2Mn0. 3O2 Cathode Materials of Spent Li-Ion Batteries Using Mild Mixed Acid as Leachant
,”
Waste Manage.
,
85
, pp.
175
185
.
174.
Fan
,
E.
,
Li
,
L.
,
Zhang
,
X.
,
Bian
,
Y.
,
Xue
,
Q.
,
Wu
,
J.
, and
Chen
,
R.
,
2018
, “
Selective Recovery of Li and Fe From Spent Lithium-ion Batteries by an Environmentally Friendly Mechanochemical Approach
,”
ACS Sustainable Chem. Eng.
,
6
(
8
), pp.
11029
11035
.
175.
Myoung
,
J.
,
Jung
,
Y.
,
Lee
,
J.
, and
Tak
,
Y.
,
2002
, “
Cobalt Oxide Preparation From Waste LiCoO2 by Electrochemical–Hydrothermal Method
,”
J. Power Sources
,
112
(
2
), pp.
639
642
.
176.
Gratz
,
E.
,
Sa
,
Q.
,
Apelian
,
D.
, and
Yan
,
W.
,
2014
, “
A Closed Loop Process for Recycling Spent Lithium Ion Batteries
,”
J. Power Sources
,
262
(
4
), pp.
255
262
.
177.
Pagnanelli
,
F.
,
Moscardini
,
E.
,
Altimari
,
P.
,
Atia
,
T. A.
, and
Toro
,
L.
,
2017
, “
Leaching of Electrodic Powders From Lithium ion Batteries: Optimization of Operating Conditions and Effect of Physical Pretreatment for Waste Fraction Retrieval
,”
Waste Manage.
,
60
, pp.
706
715
.
178.
Guo
,
Y.
,
Li
,
F.
,
Zhu
,
H.
,
Li
,
G.
,
Huang
,
J.
, and
He
,
W.
,
2016
, “
Leaching Lithium From the Anode Electrode Materials of Spent Lithium-Ion Batteries by Hydrochloric Acid (HCl)
,”
Waste Manage.
,
51
, pp.
227
233
.
179.
Zhang
,
P.
,
Yokoyama
,
T.
,
Itabashi
,
O.
,
Suzuki
,
T. M.
, and
Inoue
,
K.
,
1998
, “
Hydrometallurgical Process for Recovery of Metal Values From Spent Lithium-Ion Secondary Batteries
,”
Hydrometallurgy
,
47
(
2–3
), pp.
259
271
.
180.
Chen
,
X.
,
Fan
,
B.
,
Xu
,
L.
,
Zhou
,
T.
, and
Kong
,
J.
,
2016
, “
An Atom-Economic Process for the Recovery of High Value-Added Metals From Spent Lithium-Ion Batteries
,”
J. Cleaner Prod.
,
112
, pp.
3562
3570
.
181.
Nayaka
,
G. P.
,
Pai
,
K. V.
,
Santhosh
,
G.
, and
Manjanna
,
J.
,
2016
, “
Recovery of Cobalt as Cobalt Oxalate From Spent Lithium Ion Batteries by Using Glycine as Leaching Agent
,”
J. Environ. Chem. Eng.
,
4
(
2
), pp.
2378
2383
.
182.
Li
,
L.
,
Lu
,
J.
,
Yang
,
R.
,
Xiao
,
X. Z.
,
Ren
,
J. C.
,
Feng
,
W.
, and
Amine
,
K.
,
2012
, “
Ascorbic-Acid-Assisted Recovery of Cobalt and Lithium From Spent Li-Ion Batteries
,”
J. Power Sources
,
218
(
11
), pp.
21
27
.
183.
Li
,
L.
,
Zhai
,
L.
,
Zhang
,
X.
,
Lu
,
J.
,
Chen
,
R.
,
Wu
,
F.
, and
Amine
,
K.
,
2014
, “
Recovery of Valuable Metals From Spent Lithium-Ion Batteries by Ultrasonic-Assisted Leaching Process
,”
J. Power Sources
,
262
, pp.
380
385
.
184.
Zeng
,
X.
,
Li
,
J.
, and
Shen
,
B.
,
2015
, “
Novel Approach to Recover Cobalt and Lithium From Spent Lithium-Ion Battery Using Oxalic Acid
,”
J. Hazard. Mater.
,
295
(
9
), pp.
112
118
.
185.
Lee
,
C. K.
, and
Rhee
,
K. I.
,
2002
, “
Preparation of LiCoO2 From Spent Lithium-Ion Batteries
,”
J. Power Sources
,
109
(
1
), pp.
17
21
.
186.
Zheng
,
X.
,
Gao
,
W.
,
Zhang
,
X.
,
He
,
M.
,
Lin
,
X.
,
Cao
,
H.
,
Zhang
,
Y.
, and
Sun
,
Z.
,
2017
, “
Spent Lithium-Ion Battery Recycling—Reductive Ammonia Leaching of Metals From Cathode Scrap by Sodium Sulphite
,”
Waste Manage.
,
60
, pp.
680
688
.
187.
Ku
,
H.
,
Jung
,
Y.
,
Jo
,
M.
,
Park
,
S.
,
Kim
,
S.
,
Yang
,
D.
,
Rhee
,
K.
,
An
,
E. M.
,
Sohn
,
J.
, and
Kwon
,
K.
,
2016
, “
Recycling of Spent Lithium-Ion Battery Cathode Materials by Ammoniacal Leaching
,”
J. Hazard. Mater.
,
313
(
12
), pp.
138
146
.
188.
Xin
,
B.
,
Zhang
,
D.
,
Xian
,
Z.
,
Xia
,
Y.
,
Wu
,
F.
,
Chen
,
S.
, and
Li
,
L.
,
2009
, “
Bioleaching Mechanism of Co and Li From Spent Lithium-Ion Battery by the Mixed Culture of Acidophilic Sulfur-Oxidizing and Iron-Oxidizing Bacteria
,”
Bioresour. Technol.
,
100
(
24
), pp.
6163
6169
.
189.
Zeng
,
G.
,
Luo
,
S.
,
Deng
,
X.
,
Li
,
L.
, and
Au
,
C.
,
2013
, “
Influence of Silver Ions on Bioleaching of Cobalt From Spent Lithium Batteries
,”
Miner. Eng.
,
49
(
1
), pp.
40
44
.
190.
Chen
,
S. Y.
, and
Lin
,
J. G.
,
2009
, “
Enhancement of Metal Bioleaching From Contaminated Sediment Using Silver Ion
,”
J. Hazard. Mater.
,
161
(
2–3
), pp.
893
899
.
191.
Zeng
,
G.
,
Deng
,
X.
,
Luo
,
S.
,
Luo
,
X.
, and
Zou
,
J.
,
2012
, “
A Copper-Catalyzed Bioleaching Process for Enhancement of Cobalt Dissolution From Spent Lithium-Ion Batteries
,”
J. Hazard. Mater.
,
199
(
1
), pp.
164
169
.
192.
Xin
,
Y.
,
Guo
,
X.
,
Chen
,
S.
,
Wang
,
J.
,
Wu
,
F.
, and
Xin
,
B.
,
2016
, “
Bioleaching of Valuable Metals Li, Co, Ni and Mn From Spent Electric Vehicle Li-Ion Batteries for the Purpose of Recovery
,”
J. Cleaner Prod.
,
116
(
3
), pp.
249
258
.
193.
Bahaloo-Horeh
,
N.
, and
Mousavi
,
S. M.
,
2017
, “
Enhanced Recovery of Valuable Metals From Spent Lithium-Ion Batteries Through Optimization of Organic Acids Produced by Aspergillus Niger
,”
Waste Manage.
,
60
(
5
), pp.
666
679
.
194.
Kumar
,
A.
,
Holuszko
,
M.
, and
Espinosa
,
D.
,
2017
, “
E-waste: An Overview on Generation, Collection, Legislation and Recycling Practices
,”
Resour. Conserv. Recycl.
,
122
, pp.
32
42
.
195.
Liang
,
Y.
,
Su
,
J.
,
Xi
,
B.
,
Yu
,
Y.
,
Ji
,
D.
,
Sun
,
Y.
,
Cui
,
C.
, and
Zhu
,
J.
,
2016
, “
Life Cycle Assessment of Lithium-Ion Batteries for Greenhouse Gas Emissions
,”
Resour., Conserv. Recycl.
,
117
, pp.
285
293
.
196.
Feng
,
W.
,
Rong
,
S.
,
Xu
,
J.
,
Zheng
,
C.
, and
Ming
,
K.
,
2016
, “
Recovery of Cobalt From Spent Lithium Ion Batteries Using Sulphuric Acid Leaching Followed by Solid–Liquid Separation and Solvent Extraction
,”
RSC Adv.
,
6
(
88
), pp.
85303
85311
.
197.
Joo
,
S. H.
,
Shin
,
D.
,
Oh
,
C. H.
,
Wang
,
J. P.
, and
Shin
,
S. M.
,
2016
, “
Extraction of Manganese by Alkyl Monocarboxylic Acid in a Mixed Extractant From a Leaching Solution of Spent Lithium-Ion Battery Ternary Cathodic Material
,”
J. Power Sources
,
305
(
5
), pp.
175
181
.
198.
Jha
,
A. K.
,
Jha
,
M. K.
,
Kumari
,
A.
,
Sahu
,
S. K.
, and
Pandey
,
B. D.
,
2013
, “
Selective Separation and Recovery of Cobalt From Leach Liquor of Discarded Li-Ion Batteries Using Thiophosphinic Extractant
,”
Sep. Purif. Technol.
,
104
, pp.
160
166
.
199.
Lv
,
W.
,
Wang
,
Z.
,
Cao
,
H.
,
Sun
,
Y.
,
Zhang
,
Y.
, and
Sun
,
Z.
,
2017
, “
A Critical Review and Analysis on the Recycling of Spent Lithium-Ion Batteries
,”
ACS Sustainable Chem. Eng.
,
6
(
2
), pp.
1504
1521
.
200.
Joulie
,
M.
,
Laucournet
,
R.
, and
Billy
,
E.
,
2014
, “
Hydrometallurgical Process for the Recovery of High Value Metals From Spent Lithium Nickel Cobalt Aluminum Oxide Based Lithium-Ion Batteries
,”
J. Power Sources
,
247
(
5
), pp.
551
555
.
201.
Chen
,
X.
,
Chen
,
Y.
,
Zhou
,
T.
,
Liu
,
D.
,
Hu
,
H.
, and
Fan
,
S.
,
2015
, “
Hydrometallurgical Recovery of Metal Values From Sulfuric Acid Leaching Liquor of Spent Lithium-Ion Batteries
,”
Waste Manage.
,
38
, pp.
349
356
.
202.
Pant
,
D.
, and
Dolker
,
T.
,
2016
, “
Green and Facile Method for the Recovery of Spent Lithium Nickel Manganese Cobalt Oxide (NMC) Based Lithium Ion Batteries
,”
Waste Manage.
,
60
, pp.
689
695
.
203.
Wang
,
R. C.
,
Lin
,
Y. C.
, and
Wu
,
S. H.
,
2009
, “
A Novel Recovery Process of Metal Values From the Cathode Active Materials of the Lithium-Ion Secondary Batteries
,”
Hydrometallurgy
,
99
(
3–4
), pp.
194
201
.
204.
Pranolo
,
Y.
,
Zhang
,
W.
, and
Cheng
,
C. Y.
,
2010
, “
Recovery of Metals From Spent Lithium-Ion Battery Leach Solutions With a Mixed Solvent Extractant System
,”
Hydrometallurgy
,
102
(
1–4
), pp.
37
42
.
205.
Ferreira
,
D. A.
,
Prados
,
L.
,
Majuste
,
D.
, and
Mansur
,
M. B.
,
2009
, “
Hydrometallurgical Separation of Aluminium, Cobalt, Copper and Lithium From Spent Li-Ion Batteries
,”
J. Power Sources
,
187
(
1
), pp.
238
246
.
206.
Garcia
,
E. M.
,
Tarôco
,
H. A.
,
Matencio
,
T.
,
Domingues
,
R. Z.
,
Santos
,
J.
, and
Freitas
,
M.
,
2011
, “
Electrochemical Recycling of Cobalt From Spent Cathodes of Lithium–Ion Batteries: Its Application as Coating on SOFC Interconnects
,”
J. Appl. Electrochem.
,
41
(
11
), pp.
1373
1379
.
207.
Sa
,
Q.
,
Gratz
,
E.
,
He
,
M.
,
Lu
,
W.
,
Apelian
,
D.
, and
Wang
,
Y.
,
2015
, “
Synthesis of High Performance LiNi1/3Mn1/3Co1/3O2 From Lithium Ion Battery Recovery Stream
,”
J. Power Sources
,
282
, pp.
140
145
.
208.
Yang
,
Y.
,
Huang
,
G.
,
Xie
,
M.
,
Xu
,
S.
, and
He
,
Y.
,
2016
, “
Synthesis and Performance of Spherical LiNixCoyMn1-x-yO2 Regenerated From Nickel and Cobalt Scraps
,”
Hydrometallurgy
,
165
, pp.
358
369
.
209.
Lee
,
M. H.
,
Kang
,
Y. J.
,
Myung
,
S. T.
, and
Sun
,
Y. K.
,
2004
, “
Synthetic Optimization of Li[Ni1/3Co1/3Mn1/3]O2 via Co-Precipitation
,”
Electrochim. Acta
,
50
(
4
), pp.
939
948
.
210.
Lu
,
Y.
,
Yong
,
F.
, and
Xi
,
G.
,
2015
, “
A New Method for the Synthesis of LiNi1/3Co1/3Mn1/3O2 From Waste Lithium Ion Batteries
,”
RSC Adv.
,
5
(
55
), pp.
44107
44114
.
211.
Nie
,
H.
,
Long
,
X.
,
Song
,
D.
,
Song
,
J.
, and
Yuan
,
Z.
,
2015
, “
LiCoO2: Recycling From Spent Batteries and Regeneration With Solid State Synthesis
,”
Green Chem.
,
17
(
2
), pp.
1276
1280
.
212.
Ganter
,
M. J.
,
Landi
,
B. J.
,
Babbitt
,
C. W.
,
Anctil
,
A.
, and
Gaustad
,
G.
,
2014
, “
Cathode Refunctionalization as a Lithium Ion Battery Recycling Alternative
,”
J. Power Sources
,
256
(
6
), pp.
274
280
.
213.
Zhi
,
S.
,
2018
, “
A Mini-Review on Metal Recycling From Spent Lithium Ion Batteries
,”
Engineering
,
4
(
3
), pp.
361
370
.
214.
Li
,
L.
,
Zhang
,
X.
,
Li
,
M.
,
Chen
,
R.
,
Wu
,
F.
,
Amine
,
K.
, and
Lu
,
J.
,
2018
, “
The Recycling of Spent Lithium-Ion Batteries: A Review of Current Processes and Technologies
,”
Electrochem. Energy Rev.
,
1
(
4
), pp.
461
482
.
215.
Ramoni
,
M. O.
,
Zhang
,
Y.
,
Zhang
,
H. C.
, and
Ghebrab
,
T.
,
2016
, “
Laser Ablation of Electrodes for Li-Ion Battery Remanufacturing
,”
Int. J. Adv. Des. Manuf. Technol.
,
88
(
9–12
), pp.
3067
3076
.
216.
Liu
,
W. W.
,
Zhang
,
H.
,
Liu
,
L. H.
,
Qing
,
X. C.
,
Tang
,
Z. J.
,
Li
,
M. Z.
,
Yin
,
J. S.
, and
Zhang
,
H. C.
,
2016
, “
Remanufacturing Cathode From End-of-Life of Lithium-Ion Secondary Batteries by Nd:YAG Laser Radiation
,”
Clean Technol. Environ. Policy
,
18
(
1
), pp.
231
243
.
217.
Ciez
,
R. E.
, and
Whitacre
,
J. F.
,
2019
, “
Examining Different Recycling Processes for Lithium-Ion Batteries
,”
Nat. Sustain.
,
2
(
2
), pp.
148
156
.
218.
Li
,
L.
,
Dunn
,
J. B.
,
Zhang
,
X. X.
,
Gaines
,
L.
,
Chen
,
R. J.
,
Wu
,
F.
, and
Amine
,
K.
,
2013
, “
Recovery of Metals From Spent Lithium-Ion Batteries With Organic Acids as Leaching Reagents and Environmental Assessment
,”
J. Power Sources
,
233
, pp.
180
189
.
219.
Golroudbary
,
S. R.
,
Calisayaazpilcueta
,
D.
, and
Kraslawski
,
A.
,
2019
, “
The Life Cycle of Energy Consumption and Greenhouse Gas Emissions From Critical Minerals Recycling: Case of Lithium-Ion Batteries
,”
Procedia CIRP
, pp.
316
321
.
220.
Ober
,
J. A.
,
2018
, “
Mineral Commodity Summaries 2018, US Geological Survey
.”
221.
Foss
,
M. M.
,
Gülen
,
G.
,
Tsai
,
C.-H.
,
Quijano
,
D.
, and
Elliott
,
B.
,
2016
, “
Battery Materials Value Chains, Center for Energy Economics (CEE)
.”
222.
NIMS
,
2003
, “
Estimation of CO2 Emission and Energy Consumption in Extraction of Metals
,” Electronic Resource.
223.
Hocking
,
M.
,
Kan
,
J.
,
Young
,
P.
,
Terry
,
C.
, and
Begleiter
,
D.
,
2016
, Lithium 101, Deutsche Bank, http//www.Nims.Go.Jp/Genso/0ej00700000039eqAtt/0ej00700000039j5.pdf
224.
Wendl
,
M.
,
Wietschel
,
M.
,
Marscheider-Weidemann
,
F.
, and
Angerer
,
I. G.
,
2009
, “
Abschätzung des künftigen Angebot-Nachfrage-Verhältnisses von Lithium vor dem Hintergrund des steigenden Verbrauchs in der Elektromobilität, Karlsruhe Inst. für Technologie, Fraunhofer-Inst. für System-und Innovationsforschung
.”
225.
Lebedeva
,
N.
,
Di Persio
,
F.
, and
Boon-Brett
,
L.
,
2017
,
Lithium Ion Battery Value Chain and Related Opportunities for Europe
,
European Commission
.
226.
Raugei
,
M.
, and
Winfield
,
P.
,
2019
, “
Prospective LCA of the Production and EoL Recycling of a Novel Type of Li-Ion Battery for Electric Vehicles
,”
J. Cleaner Prod.
,
213
, pp.
926
932
.
227.
St John
,
J.
,
2015
, “
Nissan, Green Charge Networks turn ‘second-life’ EV batteries into grid storage business
.” https://www.greentechmedia.com/articles/read/nissan-green-charge-networks-turn-second-life-ev-batteries-into-grid-storag, Acessed June 15, 2015.
228.
Green Car Congress
,
2015
, “
Mitsubishi Joins PSA and Other French Partners in Second-Life Batteries Demonstration
.” http://www.greencarcongress.com/2015/07/20150710-mmc.html, Accessed January 17, 2016.
229.
BMW
,
2014
, “
BMW i Batterien werden als, Second Life Batteries “flexible Speicher für erneuerbare Energien und sichern die Stabilität des Stromnetzes
.” https://www.press.bmwgroup.com/deutschland/article/detail/T0193200DE/bmw-i-batterienwerden-als-second-life-batteries-flexible-speicher-f%E3%BCr-erneuerbare-energienund, Accessed August 18, 2016.
230.
Robb
,
J.
,
Eaton xStorage Buildings White paper; March 2018. Making Stadiums and Arenas More Resilient and Energy Efficient. Publication No. WP701001EN/CSSC-868
.
231.
Jiao
,
N.
,
China Tower Can ‘absorb’ 2 Million Spent Electric Vehicle Batteries
. https://www.idtechex.com/en/research-article/china-tower-can-absorb-2-million-spent-electric-vehicle-batteries/15460
233.
Utilizing Unused Resources
,
Achieving Japan’s first “battery to battery” recycling
, http://www.smm.co.jp/E/csr/, Accessed January 1, 2020.
234.
Wang
,
H.
, and
Friedrich
,
B.
,
2015
, “
Development of a Highly Efficient Hydrometallurgical Recycling Process for Automotive Li–Ion Batteries
,”
Sustain. Metall.
,
1
, pp.
168
178
.
235.
GEM
, Waste Battery and Power Battery Material Recycling Industrial Chain, http://en.gem.com.cn/en/UsedBatteryRecycling/index.html
You do not currently have access to this content.