Abstract

Bioprinting is the fabrication of structures based on layer-by-layer deposition of biomaterials. Applications of bioprinting using plant or algae cells include the production of metabolites for use in pharmaceutical, cosmetic, and food industries. Reported studies regarding effects of extrusion pressure and needle diameter on cell viability in bioprinting have used animal cells. There are no reports regarding effects of extrusion pressure and needle diameter on cell viability using plant or algae cells. This paper fills this knowledge gap by reporting an experimental investigation on effects of extrusion pressure and needle diameter on cell quantity (an indicator of cell viability) in extrusion-based bioprinting of hydrogel-based bioink containing Chlamydomonas reinhardtii algae cells. Extrusion pressure levels used in this study were 3, 5, and 7 bar, and needle diameter levels were 200, 250, and 400 µm. Algae cell quantity in printed samples was measured on the third day and sixth day post bioprinting. Results show that, when extrusion pressure increases or needle diameter decreases, algae cell quantity in printed samples decreases.

References

References
1.
Dababneh
,
A. B.
, and
Ozbolat
,
I. T.
,
2014
, “
Bioprinting Technology: A Current State-of-the-Art Review
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061016
. 10.1115/1.4028512
2.
Seidel
,
J.
,
Ahlfeld
,
T.
,
Adolph
,
M.
,
Kümmritz
,
S.
,
Steingroewer
,
J.
,
Krujatz
,
F.
,
Bley
,
T.
,
Gelinsky
,
M.
, and
Lode
,
A.
,
2017
, “
Green Bioprinting: Extrusion-Based Fabrication of Plant Cell-Laden Biopolymer Hydrogel Scaffolds
,”
Biofabrication
,
9
(
4
), p.
045011
. 10.1088/1758-5090/aa8854
3.
Brodelius
,
P.
,
1985
, “
The Potential Role of Immobilization in Plant Cell Biotechnology
,”
Trends Biotechnol.
,
3
(
11
), pp.
280
285
. 10.1016/0167-7799(85)90003-4
4.
Moreno-Garrido
,
I.
,
2008
, “
Microalgae Immobilization: Current Techniques and Uses
,”
Bioresour. Technol.
,
99
(
10
), pp.
3949
3964
. 10.1016/j.biortech.2007.05.040
5.
Ben-Amotz
,
A.
, and
Avron
,
M.
,
1983
, “
Accumulation of Metabolites by Halotolerant Algae and Its Industrial Potential
,”
Annu. Rev. Microbiol.
,
37
(
1
), pp.
95
119
. 10.1146/annurev.mi.37.100183.000523
6.
Cardozo
,
K. H.
,
Guaratini
,
T.
,
Barros
,
M. P.
,
Falcão
,
V. R.
,
Tonon
,
A. P.
,
Lopes
,
N. P.
,
Campos
,
S.
,
Torres
,
M. A.
,
Souza
,
A. O.
, and
Colepicolo
,
P.
,
2007
, “
Metabolites From Algae With Economical Impact
,”
Comp. Biochem. Physiol., Part C: Toxicol. Pharmacol.
,
146
(
1–2
), pp.
60
78
. 10.1016/j.cbpc.2006.05.007
7.
Ozbolat
,
I. T.
, and
Hospodiuk
,
M.
,
2016
, “
Current Advances and Future Perspectives in Extrusion-Based Bioprinting
,”
Biomaterials
,
76
, pp.
321
343
. 10.1016/j.biomaterials.2015.10.076
8.
Derakhshanfar
,
S.
,
Mbeleck
,
R.
,
Xu
,
K.
,
Zhang
,
X.
,
Zhong
,
W.
, and
Xing
,
M.
,
2018
, “
3D Bioprinting for Biomedical Devices and Tissue Engineering: A Review of Recent Trends and Advances
,”
Bioact. Mater.
,
3
(
2
), pp.
144
156
. 10.1016/j.bioactmat.2017.11.008
9.
Riss
,
T. L.
,
Moravec
,
R. A.
,
Niles
,
A. L.
,
Duellman
,
S.
,
Benink
,
H. A.
,
Worzella
,
T. J.
, and
Minor
,
L.
,
2016
,
Assay Guidance Manual [Internet]
, https://www.ncbi.nlm.nih.gov/books/NBK144065/,
Eli Lily & Company and the National Center for Advancing Transitional Sciences
, Cell Viability Assays.
10.
Ouyang
,
L.
,
Yao
,
R.
,
Mao
,
S.
,
Chen
,
X.
,
Na
,
J.
, and
Sun
,
W.
,
2015
, “
Three-Dimensional Bioprinting of Embryonic Stem Cells Directs Highly Uniform Embryoid Body Formation
,”
Biofabrication
,
7
(
4
), p.
044101
. 10.1088/1758-5090/7/4/044101
11.
Lode
,
A.
,
Krujatz
,
F.
,
Brüggemeier
,
S.
,
Quade
,
M.
,
Schütz
,
K.
,
Knaack
,
S.
,
Weber
,
J.
,
Bley
,
T.
, and
Gelinsky
,
M.
,
2015
, “
Green Bioprinting: Fabrication of Photosynthetic Algae-Laden Hydrogel Scaffolds for Biotechnological and Medical Applications
,”
Eng. Life Sci.
,
15
(
2
), pp.
177
183
. 10.1002/elsc.201400205
12.
Krujatz
,
F.
,
Lode
,
A.
,
Brüggemeier
,
S.
,
Schütz
,
K.
,
Kramer
,
J.
,
Bley
,
T.
,
Gelinsky
,
M.
, and
Weber
,
J.
,
2015
, “
Green Bioprinting: Viability and Growth Analysis of Microalgae Immobilized in 3D-Plotted Hydrogels Versus Suspension Cultures
,”
Eng. Life Sci.
,
15
(
7
), pp.
678
688
. 10.1002/elsc.201400131
13.
Russo
,
R.
,
Abbate
,
M.
,
Malinconico
,
M.
, and
Santagata
,
G.
,
2010
, “
Effect of Polyglycerol and the Crosslinking on the Physical Properties of a Blend Alginate-Hydroxyethylcellulose
,”
Carbohydr. Polym.
,
82
(
4
), pp.
1061
1067
. 10.1016/j.carbpol.2010.06.037
14.
Thakare
,
K.
,
Wei
,
X.
,
Jerpseth
,
L.
,
Bhardwaj
,
A.
,
Qin
,
H.
, and
Pei
,
Z.
,
2020
, “
Feasible Regions of Bioink Composition, Extrusion Pressure, and Needle Size for Continuous Extrusion-Based Bioprinting
,”
ASME J. Manuf. Sci. Eng.
,
142
(
12
), p.
124501
. 10.1115/1.4048000
15.
Pietenpol
,
J.
, and
Stewart
,
Z.
,
2002
, “
Cell Cycle Checkpoint Signaling: Cell Cycle Arrest Versus Apoptosis
,”
Toxicology
,
181
, pp.
475
481
. 10.1016/S0300-483X(02)00460-2
16.
Gerdes
,
S.
,
Mostafavi
,
A.
,
Ramesh
,
S.
,
Memic
,
A.
,
Rivero
,
I. V.
,
Rao
,
P.
, and
Tamayol
,
A.
,
2020
, “
Process–Structure–Quality Relationships of Three-Dimensional Printed Poly (Caprolactone)-Hydroxyapatite Scaffolds
,”
Tissue Eng. Part A
,
26
(
5–6
), pp.
279
291
. 10.1089/ten.tea.2019.0237
17.
Chang
,
R.
,
Nam
,
J.
, and
Sun
,
W.
,
2008
, “
Effects of Dispensing Pressure and Nozzle Diameter on Cell Survival From Solid Freeform Fabrication-Based Direct Cell Writing
,”
Tissue Eng. Part A
,
14
(
1
), pp.
41
48
. 10.1089/ten.a.2007.0004
18.
Nair
,
K.
,
Gandhi
,
M.
,
Khalil
,
S.
,
Yan
,
K. C.
,
Marcolongo
,
M.
,
Barbee
,
K.
, and
Sun
,
W.
,
2009
, “
Characterization of Cell Viability During Bioprinting Processes
,”
Biotechnol. J.
,
4
(
8
), pp.
1168
1177
. 10.1002/biot.200900004
19.
Blaeser
,
A.
,
Duarte Campos
,
D. F.
,
Puster
,
U.
,
Richtering
,
W.
,
Stevens
,
M. M.
, and
Fischer
,
H.
,
2016
, “
Controlling Shear Stress in 3D Bioprinting is a Key Factor to Balance Printing Resolution and Stem Cell Integrity
,”
Adv. Healthcare Mater.
,
5
(
3
), pp.
326
333
. 10.1002/adhm.201500677
20.
Fakhruddin
,
K.
,
Hamzah
,
M. S. A.
, and
Abd Razak
,
S. I.
,
2018
, “
Effects of Extrusion Pressure and Printing Speed of 3D Bioprinted Construct on the Fibroblast Cells Viability
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
440
, p.
012042
. 10.1088/1757-899X/440/1/012042
21.
Billiet
,
T.
,
Gevaert
,
E.
,
De Schryver
,
T.
,
Cornelissen
,
M.
, and
Dubruel
,
P.
,
2014
, “
The 3D Printing of Gelatin Methacrylamide Cell-Laden Tissue-Engineered Constructs With High Cell Viability
,”
Biomaterials
,
35
(
1
), pp.
49
62
. 10.1016/j.biomaterials.2013.09.078
22.
Müller
,
M.
,
Öztürk
,
E.
,
Arlov
,
Ø
,
Gatenholm
,
P.
, and
Zenobi-Wong
,
M.
,
2017
, “
Alginate Sulfate–Nanocellulose Bioinks for Cartilage Bioprinting Applications
,”
Ann. Biomed. Eng.
,
45
(
1
), pp.
210
223
. 10.1007/s10439-016-1704-5
You do not currently have access to this content.