Abstract

Magnetic pulse welding (MPW) is a solid-state welding process that bonds similar and dissimilar metals using a high velocity collision. In this paper, effects of impact velocity, target tube thickness, and mandrel inclusion on the interfacial morphology were investigated through the welding of tubular parts, Al6060T4 (flyer) to Cu-ETP (target), by electromagnetic compression. The hypothesis tested in this research is that a “well-supported target,” i.e., either a thick target or the support of a mandrel, allows for vortices to be created at the interface during MPW provided that the impact velocity is sufficient. The mandrel used in the experiments was polyurethane with a Shore hardness of 92A, which was pre-stressed via a washer and nut. The impact velocity was measured via photon Doppler velocimetry (PDV) and used for the setup of numerical simulations. A 2D axisymmetric numerical model was implemented in LS-DYNA to predict the interfacial morphology. Thermal analyses in the numerical model were used to predict the local melting locations and compared with experimental observations. Both experimental and numerical results showed that the interfacial wavelength increased with an increase in the impact velocity and target thickness. Similarly, a thin target with mandrel support also caused an increase in the wavelength. Vortices were only generated with appropriate impact velocities and well-supported targets, i.e., again either a thick target or the support of a mandrel.

References

References
1.
Daehn
,
G. S.
,
2003
,
“High Velocity Metal Forming
,”
ASM Handbook Forming and Forging
,
ASM
,
Metals Park, OH
.
2.
Zhang
,
Y.
,
Babu
,
S.
,
Prothe
,
C.
,
Blakely
,
M.
,
Kwasegroch
,
J.
,
LaHa
,
M.
, and
Daehn
,
G.
,
2011
, “
Application of High Velocity Impact Welding at Varied Different Length Scales
,”
J. Mater. Process. Technol.
,
211
(
5
), pp.
944
952
. 10.1016/j.jmatprotec.2010.01.001
3.
Daehn
,
G. S.
, and
Lippold
,
J. C.
,
2009
, “
Low Temperature Spot Impact Welding Driven Without Contact
,” U.S. Patent PCT/US09/36299.
4.
Wang
,
X.
,
Gu
,
C.
,
Zheng
,
Y.
,
Shen
,
Z.
, and
Liu
,
H.
,
2014
, “
Laser Shock Welding of Aluminum/Aluminum and Aluminum/Copper Plates
,”
Mater. Des.
,
56
, pp.
26
30
. 10.1016/j.matdes.2013.10.091
5.
Wang
,
H.
,
Liu
,
D.
,
Taber
,
G.
,
Lippold
,
J. C.
, and
Daehn
,
G. S.
,
2012
, “
Laser Impact Welding-Process Introduction and Key Variables
,”
Int. Conf. High Speed Form.
,
2012
, p.
255
.
6.
Wang
,
X.
,
Gu
,
Y.
,
Qiu
,
T.
,
Ma
,
Y.
,
Zhang
,
D.
, and
Liu
,
H.
,
2015
, “
An Experimental and Numerical Study of Laser Impact Spot Welding
,”
Mater. Des.
,
65
, pp.
1143
1152
. 10.1016/j.matdes.2014.08.044
7.
Kim
,
S.
,
Paik
,
S.
, and
Huh
,
M.
,
1994
, “
Explosive Welding Applications
,”
J. Korean Inst. Met. Mater.
,
32
, p.
1558
.
8.
Brasher
,
D. J.
, and
Butler
,
D. J.
,
1995
, “
Explosive Welding: Principles and Potentials
,”
Adv. Mater. Process.
,
3
(
3
), p.
37
.
9.
Nishida
,
M.
,
Chibia
,
A.
,
Honda
,
Y.
,
Hirazumi
,
J.
, and
Horikiri
,
K.
,
1995
, “
Electron Microscopy Studies of Bonding Interface in Explosively Welded Ti/Steel Clads
,”
ISIJ Int.
,
35
(
2
), pp.
217
219
. 10.2355/isijinternational.35.217
10.
Yano
,
S.
,
Matsui
,
H.
, and
Morozumi
,
S.
,
1998
, “
Structural Observations of the Interface of Explosion Bonded Mo/Cu System
,”
J. Mater. Sci.
,
33
, pp.
4857
4865
. 10.1023/A:1004438515248
11.
Kahraman
,
N.
,
Gülenç
,
B.
, and
Findik
,
F.
,
2005
, “
Joining of Titanium/Stainless Steel by Explosive Welding and Effect on Interface
,”
J. Mater. Process. Technol.
,
169
(
2
), pp.
127
133
. 10.1016/j.jmatprotec.2005.06.045
12.
Ege
,
E. S.
,
Inal
,
O. T.
, and
Zimmerly
,
C. A.
,
1998
, “
Response Surface Study on Production of Explosively Welded Aluminium–Titanium Laminates
,”
J. Mater. Sci.
,
33
(
22
), pp.
5327
5338
. 10.1023/A:1004485914302
13.
Hokamoto
,
K.
,
Izuma
,
T.
, and
Fujita
,
M.
,
1993
, “
New Explosive Welding Technique to Weld Aluminum Alloy and Stainless Steel Plates Using a Stainless Steel Intermediate Plate
,”
Metall. Trans.
,
24A
(
10
), pp.
2289
. 10.1007/BF02648602
14.
Kacar
,
R.
, and
Acarer
,
M.
,
2003
, “
Microstructure–Property Relationship in Explosively Welded Duplex Stainless Steel–Steel
,”
Mater. Sci. Eng. A
,
363
(
1–2
), pp.
290
296
. 10.1016/S0921-5093(03)00643-9
15.
Vivek
,
A.
,
Hansen
,
S. R.
,
Liu
,
B. C.
, and
Daehn
,
G. S.
,
2013
, “
Vaporizing Foil Actuator: A Tool for Collision Welding
,”
J. Mater. Process. Technol.
,
213
(
12
), pp.
2304
2311
. 10.1016/j.jmatprotec.2013.07.006
16.
Vivek
,
A.
,
Liu
,
B. C.
,
Hansen
,
S. R.
, and
Daehn
,
G. S.
,
2014
, “
Accessing Collision Welding Process Window for Titanium/Copper Welds With Vaporizing Foil Actuators and Grooved Targets
,”
J. Mater. Process. Technol.
,
214
(
8
), pp.
1583
1589
. 10.1016/j.jmatprotec.2014.03.007
17.
Hahn
,
M.
,
Taber
,
G.
,
Vivek
,
A.
,
Daehn
,
G. S.
, and
Tekkaya
,
A. E.
,
2016
, “
Vaporizing Foil Actuator Welding as a Competing Technology to Magnetic Pulse Welding
,”
J. Mater. Process. Technol.
,
230
(
C
), pp.
8
20
. 10.1016/j.jmatprotec.2015.11.010
18.
Lee
,
T.
,
Zhang
,
S.
,
Vivek
,
A.
,
Kinsey
,
B.
, and
Daehn
,
G.
,
2018
, “
Flyer Thickness Effect in the Impact Welding of Aluminum to Steel
,”
ASME J. Manuf. Sci. Eng.
,
140
(
12
), p.
121002
. https://doi.org/10.1115/1.4041247
19.
Lee
,
T.
,
Zhang
,
S.
,
Vivek
,
A.
,
Daehn
,
G.
, and
Kinsey
,
B.
,
2019
, “
Wave Formation in Impact Welding: Study of the Cu-Ti System
,”
CIRP Ann. Manuf. Technol.
,
68
(
1
), pp.
261
264
. 10.1016/j.cirp.2019.04.058
20.
Lueg-Althoff
,
J.
,
Schilling
,
B.
,
Bellmann
,
J.
,
Gies
,
S.
,
Schulze
,
S.
,
Tekkaya
,
A. E.
, and
Beyer
,
E.
,
2016
, “
Influence of the Wall Thicknesses on the Joint Quality During Magnetic Pulse Welding in Tube-to-Tube Configuration
,”
7th International Conference on High Speed Forming
,
Dortmund, Germany
,
April
.
21.
Lueg-Althoff
,
J.
,
Bellmann
,
J.
,
Gies
,
S.
,
Schulze
,
S.
,
Tekkaya
,
A. E.
, and
Beyer
,
E.
,
2018
, “
Influence of the Flyer Kinetics on Magnetic Pulse Welding of Tubes
,”
J. Mater. Process. Technol.
,
262
, pp.
189
203
. 10.1016/j.jmatprotec.2018.06.005
22.
Raoelison
,
R. N.
,
Buiron
,
N.
,
Rachik
,
M.
,
Haye
,
D.
, and
Franz
,
G.
,
2012
, “
Efficient Welding Conditions in Magnetic Pulse Welding Process
,”
J. Mater. Process. Technol.
,
14
(
3
), pp.
372
377
.
23.
Raoelison
,
R. N.
,
Buiron
,
N.
,
Rachik
,
M.
,
Haye
,
D.
,
Franz
,
G.
, and
Habak
,
M.
,
2013
, “
Study of the Elaboration of a Practical Weldability Window in Magnetic Pulse Welding
,”
J. Mater. Process. Technol.
,
213
(
8
), pp.
1348
1354
. 10.1016/j.jmatprotec.2013.03.004
24.
Lueg-Althoff
,
J.
,
Lorenz
,
A.
,
Gies
,
S.
,
Weddeling
,
C.
,
Goebel
,
G.
,
Tekkaya
,
A. E.
, and
Beyer
,
E.
,
2014
, “
Magnetic Pulse Welding by Electromagnetic Compression: Determination of the Impact Velocity
,”
Adv. Mater. Res.
,
966–967
, pp.
489
499
. 10.4028/www.scientific.net/AMR.966-967.489
25.
Kinsey
,
B.
, and
Nassiri
,
A.
,
2017
, “
Analytical Model and Experimental Investigation of Electromagnetic Tube Compression With Axi-Symmetric Coil and Field Shaper
,”
CIRP Ann. Manuf. Technol.
,
66
(
1
), pp.
273
276
. 10.1016/j.cirp.2017.04.121
26.
Kinsey
,
B.
,
Zhang
,
S.
, and
Korkolis
,
Y.
,
2018
, “
Semi-analytical Modelling With Numerical and Experimental Validation of Electromagnetic Forming Using a Uniform Pressure Actuator
,”
CIRP Ann. Manuf. Technol.
,
67
(
1
), pp.
285
288
. 10.1016/j.cirp.2018.04.028
27.
Carvalho
,
G.
,
Mendes
,
R.
,
Leal
,
R. M.
,
Galvao
,
I.
, and
Loureiro
,
A.
,
2017
, “
Effect of the Flyer Material on the Interface Phenomena in Aluminium and Copper Explosive Welds
,”
Mater. Des.
,
122
(
4
), pp.
172
183
. 10.1016/j.matdes.2017.02.087
28.
Faes
,
K.
,
Baaten
,
T.
,
De Waele
,
W.
, and
Debroux
,
N.
,
2010
, “
Joining of Copper to Brass Using Magnetic Pulse Welding
,”
4th International Conference on High Speed Forming
,
Dortmund Germany
,
April 27
.
29.
Nassiri
,
A.
, and
Kinsey
,
B.
,
2016
, “
Numerical Studies on High-Velocity Impact Welding: Smoothed Particle Hydrodynamics (SPH) and Arbitrary Lagrangian–Eulerian (ALE)
,”
J. Manuf. Process.
,
24
(
2
), pp.
376
381
. 10.1016/j.jmapro.2016.06.017
30.
Ben-Artzy
,
A.
,
Stern
,
A.
,
Frage
,
N.
,
Shribman
,
V.
, and
Sadot
,
O.
,
2010
, “
Wave Formation Mechanism in Magnetic Pulse Welding
,”
Int. J. Impact Eng.
,
37
(
4
), pp.
397
404
. 10.1016/j.ijimpeng.2009.07.008
31.
Blazynski
,
T. Z.
,
2012
,
Explosive Welding, Forming and Compaction
,
Springer Science & Business Media
.
32.
Ben-Artzy
,
A.
,
Stern
,
A.
,
Frage
,
N.
, and
Shribman
,
V.
,
2008
, “
Interface Phenomena in Aluminium-Magnesium Magnetic Pulse Welding
,”
Sci. Technol. Weld. Joining
,
13
(
4
), pp.
402
408
. 10.1179/174329308X300136
33.
Wu
,
X.
, and
Shang
,
J.
,
2014
, “
An Investigation of Magnetic Pulse Welding of Al/Cu and Interface Characterization
,”
ASME J. Manuf. Sci. Eng.
,
136
(
5
), p.
051002
. 10.1115/1.4027917
34.
Raoelison
,
R.
,
Racine
,
D.
,
Zhang
,
Z.
,
Buiron
,
N.
,
Marceau
,
D.
, and
Rachik
,
M.
,
2014
, “
Magnetic Pulse Welding: Interface of Al/Cu Joint and Investigation of Intermetallic Formation Effect on the Weld Features
,”
J. Manuf. Process.
,
16
(
4
), pp.
427
434
. 10.1016/j.jmapro.2014.05.002
35.
Itoi
,
T.
,
Mohamad
,
A.
,
Suzuki
,
R.
, and
Okagawa
,
K.
,
2016
, “
Microstructure Evolution of a Dissimilar Junction Interface Between an Al Sheet and a Ni-Coated Cu Sheet Joined by Magnetic Pulse Welding
,”
Mater. Charact.
,
118
(
2
), pp.
142
148
. 10.1016/j.matchar.2016.05.021
36.
Psyk
,
V.
,
Lieber
,
T.
,
Kurka
,
P.
, and
Drossel
,
W. G.
,
2014
, “
Electromagnetic Joining of Hybrid Tubes for Hydroforming
,”
Procedia CIRP
,
23
(
3
), pp.
1
6
. 10.1016/j.procir.2014.10.063
37.
Liu
,
B.
,
Palazotto
,
A.
,
Nassiri
,
A.
,
Vivek
,
A.
, and
Daehn
,
G. S.
,
2019
, “
Experimental and Numerical Investigation of Interfacial Microstructure in Fully Age-Hardened 15-5 pH Stainless Steel During Impact Welding
,”
J. Mater. Sci.
,
54
(
13
), pp.
9824
9842
. 10.1007/s10853-019-03546-0
38.
Chemin
,
C.
, and
Qingming
,
T.
,
1989
, “
Mechanism of Wave Formation at the Interface in Explosive Welding
,”
Acta Mech. Sin.
,
5
(
2
), pp.
97
108
. 10.1007/BF02489134
39.
Deribas
,
A. A.
, and
Zakharenko
,
I. D.
,
1974
, “
Surface Effects With Oblique Collisions Between Metallic Plates
,”
Combust. Explos. Shock Waves
,
10
(
3
), pp.
358
367
. 10.1007/BF01463767
40.
Abrahamson
,
G. R.
,
1961
, “
Permanent Periodic Surface Deformations Due to a Traveling jet
,”
J. Appl. Mech.
,
28
(
4
), pp.
519
528
. 10.1115/1.3641777
41.
Hunt
,
J. N.
,
1986
, “
Wave Formation in Explosive Welding
,”
Philos. Mag.
,
17
(
148
), pp.
669
680
. 10.1080/14786436808223020
42.
Mousavi
,
A. A.
, and
Al-Hassani
,
S. T. S.
,
2005
, “
Numerical and Experimental Studies of the Mechanism of the Wavy Interface Formations in Explosive/Impact Welding
,”
J. Mech. Phys. Solids
,
53
(
11
), pp.
2501
2528
. 10.1016/j.jmps.2005.06.001
43.
Nassiri
,
A.
,
Chini
,
G.
, and
Kinsey
,
B.
,
2016
, “
Exploring a Mechanism for Interfacial Wave Formation in High-Velocity Impact Welding Using Temporal Stability Analysis
,”
J. Mech. Phys. Solids
,
95
(
2
), pp.
351
373
. 10.1016/j.jmps.2016.06.002
44.
Zhang
,
S.
, and
Kinsey
,
B.
,
2019
, “Numerical Investigation of Impact Welding by Eulerian and Smoothed Particle Hydrodynamic Methods”, NUMIFORM. Portsmouth, NH, June 23–27.
45.
Nassiri
,
A.
,
Vivek
,
A.
,
Abke
,
T.
,
Liu
,
B.
,
Lee
,
T.
, and
Daehn
,
G.
,
2017
, “
Depiction of Interfacial Morphology in High-Velocity Impact Welded Ti/Cu Bimetallic Systems Using Smoothed Particle Hydrodynamics
,”
Appl. Phys. Lett.
,
23
(
110
), p.
1601
.
46.
Raoelison
,
R. N.
,
Sapanathan
,
T.
,
Padayodi
,
E.
,
Buiron
,
N.
, and
Rachik
,
M.
,
2016
, “
Interfacial Kinematics and Governing Mechanisms Under the Influence of High Strain Rate Impact Conditions: Numerical Computations of Experimental Observations
,”
J. Mech. Phys. Solids
,
96
(
2016
), pp.
147
161
. 10.1016/j.jmps.2016.07.014
47.
Libersky
,
L. D.
, and
Petschek
,
A. G.
,
1990
, “
Smooth Particle Hydrodynamics With Strength of Materials, Advances in the Free Lagrange Method
,”
Lect. Notes Phys.
,
395
, pp.
248
257
. 10.1007/3-540-54960-9_58
48.
Libersky
,
L. D.
,
Petschek
,
A. G.
,
Carney
,
A. G.
,
Hipp
,
T. C.
,
Allahdadi
,
J. R.
, and
High
,
F. A.
,
1993
, “
Strain Lagrangian Hydrodynamics: A Three-Dimensional SPH Code for Dynamic Material Response
,”
J. Comput. Phys.
,
109
(
1
), pp.
67
75
. 10.1006/jcph.1993.1199
49.
Randles
,
P. W.
, and
Libersky
,
L. D.
,
1996
, “
Smoothed Particle Hydrodynamics: Some Recent Improvements and Applications
,”
Comput. Meth. Appl. Mech. Eng.
,
139
(
1–4
), pp.
375
408
. 10.1016/S0045-7825(96)01090-0
50.
Lueg-Althoff
,
J.
,
2019
,
Fügen von Rohren Mittels Elektromagnetischer Umformung—Magnetpulsschweißen
, 1st ed.,
Shaker
,
Herzogenrath
(in German).
51.
Bellmann
,
J.
,
Lueg-Althoff
,
J.
,
Schulze
,
S.
,
Gies
,
S.
,
Beyer
,
E.
, and
Tekkaya
,
A. E.
,
2016
, “
Measurement and Analysis Technologies for Magnetic Pulse Welding: Established Methods and New Strategies
,”
Adv. Manuf.
,
4
(
4
), pp.
322
339
. 10.1007/s40436-016-0162-5
52.
Lueg-Althoff
,
J.
,
Gies
,
S.
,
Bellmann
,
J.
,
Schulze
,
S.
,
Tekkaya
,
A. E.
, and
Beyer
,
E.
,
2016
,
Magnetic Pulse Welding of Tubes: Ensuring the Stability of the Inner Diameter
,
EAPPC With BEAMS & MEGAGAUSS
,
Cascais, Portugal
.
53.
Psyk
,
V.
,
Scheffler
,
C.
,
Linnemann
,
M.
, and
Landgrebe
,
D.
,
2017
, “
Manufacturing of Hybrid Aluminum Copper Joints by Electromagnetic Pulse Welding–Identification of Quantitative Process Windows
,”
AIP Conference Proceedings
,
Dublin, Ireland
,
Oct. 16
.
54.
Xu
,
J.
, and
Wang
,
J.
,
2014
, “
Interaction Methods for the SPH Parts (Multiphase Flows, Solid Bodies) in LS-DYNA
,”
13th International LS-DYNA Users Conference
,
Dearborn, MI
,
June 8–10
.
55.
Johnson
,
G. R.
, and
Cook
,
W. H.
,
1983
, “
A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates, and High Temperatures
,”
Proceedings 7th International Symposium on Ballistics
,
The Hague
,
Apr. 19–21, 1983
, pp.
541
547
.
56.
Kaliskiego
,
G. S.
,
2013
, “
Rubber Structure Under Dynamic Loading—Computational Studies
,”
Eng. Trans.
,
61
(
1
), pp.
33
46
.
57.
Meyers
,
M. A.
,
Andrade
,
U. R.
, and
Chokshi
,
A. H.
,
1995
, “
The Effect of Grain Size on the High-Strain, High-Strain-Rate Behavior of Copper
,”
Metall. Mater. Trans. A
,
26
(
11
), pp.
2881
2893
. 10.1007/BF02669646
58.
Sapanathan
,
T.
,
Raoelison
,
R. N.
,
Padayodi
,
E.
,
Buiron
,
N.
, and
Rachik
,
M.
,
2016
, “
Depiction of Interfacial Characteristic Changes During Impact Welding Using Computational Methods: Comparison Between Arbitrary Lagrangian—Eulerian and Eulerian Simulations
,”
Mater. Des.
,
102
, pp.
303
312
. 10.1016/j.matdes.2016.04.025
59.
Weinrich Mora
,
A.
,
2016
,
Das Freibiegen mit Inkrementeller Spannungsüberlagerung
, 1st ed.,
Shaker
,
Herzogenrath (in German)
.
60.
LS-DYNA Theory Manual, https://www.dynasupport.com/manuals, Accessed May 2014.
61.
Li
,
J.
,
Raoelison
,
R.
,
Sapanathan
,
T.
,
Hou
,
Y.
, and
Rachik
,
M.
,
2020
, “
Interface Evolution During Magnetic Pulse Welding Under Extremely High Strain Rate Collision: Mechanisms, Thermomechanical Kinetics and Consequences
,”
Acta Mater.
,
195
, pp.
404
415
. 10.1016/j.actamat.2020.05.028
62.
Kakizaki
,
S.
,
Watanabe
,
M.
, and
Kumai
,
S.
,
2011
, “
Simulation and Experimental Analysis of Metal jet Emission and Weld Interface Morphology in Impact Welding
,”
Mater. Trans.
,
52
(
5
), pp.
1003
1008
. 10.2320/matertrans.L-MZ201128
You do not currently have access to this content.