Abstract

Production efficiency and product quality need to be addressed simultaneously to ensure the reliability of large-scale additive manufacturing. Specifically, print surface temperature plays a critical role in determining the quality characteristics of the product. Moreover, heat transfer via conduction as a result of spatial correlation between locations on the surface of large and complex geometries necessitates the employment of more robust methodologies to extract and monitor the data. In this article, we propose a framework for real-time data extraction from thermal images and a novel method for controlling layer time during the printing process. A FLIR™ thermal camera captures and stores the stream of images from the print surface temperature, while the Thermwood Large Scale Additive Manufacturing (LSAM™) machine is printing components. A set of digital image processing tasks were performed to extract the thermal data. Separate regression models based on real-time thermal imaging data are built on each location on the surface to predict the associated temperatures. Subsequently, a control method is proposed to find the best time for printing the next layer given the predictions. Finally, several scenarios based on the cooling dynamics of surface structure were defined and analyzed, and the results were compared to the current fixed layer time policy. It was concluded that the proposed method can significantly increase the efficiency by reducing the overall printing time while preserving the quality.

References

1.
Bikas
,
H.
,
Stavropoulos
,
P.
, and
Chryssolouris
,
G.
,
2016
, “
Additive Manufacturing Methods and Modelling Approaches: A Critical Review
,”
Int. J. Adv. Manuf. Technol.
,
83
(
1–4
), pp.
389
405
. 10.1007/s00170-015-7576-2
2.
Brenken
,
B.
,
Barocio
,
E.
,
Favaloro
,
A.
,
Kunc
,
V.
, and
Pipes
,
R. B.
,
2018
, “
Fused Filament Fabrication of Fiber-Reinforced Polymers: A Review
,”
Addit. Manuf.
,
21
, pp.
1
16
. 10.1016/j.addma.2018.01.002
3.
Duty
,
C. E.
,
Kunc
,
V.
,
Compton
,
B.
,
Post
,
B.
,
Erdman
,
D.
,
Smith
,
R.
,
Lind
,
R.
,
Lloyd
,
P.
, and
Love
,
L.
,
2017
, “
Structure and Mechanical Behavior of Big Area Additive Manufacturing (BAAM) Materials
,”
Rapid Prototyp. J.
,
23
(
1
), pp.
181
189
. 10.1108/RPJ-12-2015-0183
4.
Thermwood
,
2019
, “
Large Scale Additive Manufacturing
,” http://thermwood.com/lsam/brochures/lsam_2017_brochure/index.html, Accessed September 1, 2019.
5.
Sun
,
Q.
,
Rizvi
,
G.
,
Bellehumeur
,
C.
, and
Gu
,
P.
,
2008
, “
Effect of Processing Conditions on the Bonding Quality of FDM Polymer Filaments
,”
Rapid Prototyp. J.
,
14
(
2
), pp.
72
80
. 10.1108/13552540810862028
6.
Compton
,
B. G.
,
Post
,
B. K.
,
Duty
,
C. E.
,
Love
,
L.
, and
Kunc
,
V.
,
2017
, “
Thermal Analysis of Additive Manufacturing of Large-Scale Thermoplastic Polymer Composites
,”
Addit. Manuf.
,
17
, pp.
77
86
. 10.1016/j.addma.2017.07.006
7.
Han
,
W.
,
Jafari
,
M. A.
,
Danforth
,
S. C.
, and
Safari
,
A.
,
2002
, “
Tool Path-Based Deposition Planning in Fused Deposition Processes
,”
ASME J. Manuf. Sci. Eng.
,
124
(
2
), pp.
462
472
. 10.1115/1.1455026
8.
Han
,
W.
,
Jafari
,
M. A.
, and
Seyed
,
K.
,
2003
, “
Process Speeding Up Via Deposition Planning in Fused Deposition-Based Layered Manufacturing Processes
,”
Rapid Prototyp. J.
,
9
(
4
), pp.
212
218
. 10.1108/13552540310489596
9.
Huang
,
X.
,
Ye
,
C.
, and
Huang
,
Y.
,
2011
, “
Tool Path Planning Based on Endpoint Build-In Optimization in Rapid Prototyping
,”
Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci.
,
225
(
12
), pp.
2919
2926
. 10.1177/0954406211399976
10.
Jin
,
Y.
,
Pierson
,
H. A.
, and
Liao
,
H.
,
2019
, “
Toolpath Allocation and Scheduling for Concurrent Fused Filament Fabrication With Multiple Extruders
,”
IISE Trans.
,
51
(
2
), pp.
192
208
. 10.1080/24725854.2017.1374582
11.
Borish
,
M.
,
Post
,
B.
,
Roschli
,
A.
,
Chesser
,
P.
,
Love
,
L.
,
Gaul
,
K.
,
Sallas
,
M.
, and
Tsiamis
,
N.
,
2019
, “
In-Situ Thermal Imaging for Single Layer Build Time Alteration in Large-Scale Polymer Additive Manufacturing
,”
Oak Ridge National Lab (ORNL)
,
Oak Ridge, TN
,
Technical Report
.
12.
Philpot
,
W.D
, and
Philipson
,
W.R
,
2012
,
Passive Microwave
,
Cornell University
,
Ithaca, NY
.
13.
Rublee
,
E.
,
Rabaud
,
V.
,
Konolige
,
K.
, and
Bradski
,
G. R.
,
2011
, “
Orb: An Efficient Alternative to Sift Or Surf
,”
IEEE International Conference on Computer Vision
,
Barcelona, Spain
,
Nov. 6
, Vol.
11
, p.
2
.
14.
Otsu
,
N.
,
1979
, “
A Threshold Selection Method From Gray-Level Histograms
,”
IEEE Trans. Syst. Man Cybern.
,
9
(
1
), pp.
62
66
. 10.1109/TSMC.1979.4310076
15.
Wang
,
F.
,
Ju
,
F.
,
Rowe
,
K.
, and
Hofmann
,
N.
,
2019
, “
Real-Time Control for Large Scale Additive Manufacturing Using Thermal Images
,”
2019 IEEE 15th International Conference on Automation Science and Engineering (CASE)
,
Vancouver, Canada
,
Aug. 22
, IEEE, pp.
36
41
.
16.
Fathizadan
,
S.
,
Niaki
,
S. T. A.
, and
Noorossana
,
R.
,
2017
, “
Using Independent Component Analysis to Monitor 2-D Geometric Specifications
,”
Qual. Reliab. Eng. Int.
,
33
(
8
), pp.
2075
2087
. 10.1002/qre.2168
17.
Wang
,
F.
,
Fathizadan
,
S.
,
Ju
,
F.
,
Rowe
,
K.
, and
Hofmann
,
N.
,
2020
, “
Print Surface Thermal Modeling and Real-Time Layer Time Control for Large-Scale Additive Manufacturing
,”
IEEE Trans. Autom. Sci. Eng.
. 10.1115/1.4048045
You do not currently have access to this content.