Abstract

For certain combinations of cutter spinning speeds and cutting depths in milling operations, self-excited vibrations or chatter of the milling tool are generated. The chatter deteriorates the surface finish of the workpiece and reduces the useful working life of the tool. In the past, extensive work has been reported on chatter detections based on the tool deflection and sound generated during the milling process, which is costly due to the additional sensor and circuitry required. On the other hand, the manual intervention is necessary to interpret the result. In the present research, online chatter detection based on the current signal applied to the ball screw drive (of the CNC machine) has been proposed and evaluated. There is no additional sensor required. Dynamic equations of the process are improved to simulate vibration behaviors of the milling tool during chatter conditions. The sequence of applied control signals for a particular feed rate is decided based on known physical and control parameters of the ball screw drive. The sequence of the applied control signal to the ball screw drive for a particular feed rate can be easily calculated. Hence, costly experimental data are eliminated. Long short-term memory neural networks are trained to detect the chatter based on the simulated sequence of control currents. The trained networks are then used to detect chatter, which shows 98% of accuracy in experiments.

References

1.
Weingaertner
,
W. L.
,
Schroeter
,
R. B.
,
Polli
,
M. L.
, and
de Oliveira Gomes
,
J.
,
2006
, “
Evaluation of High-Speed End-Milling Dynamic Stability Through Audio Signal Measurements
,”
J. Mater. Process. Technol.
,
179
(
1
), pp.
133
138
. 10.1016/j.jmatprotec.2006.03.075
2.
Choi
,
T.
, and
Shin
,
Y. C.
,
2003
, “
On-Line Chatter Detection Using Wavelet-Based Parameter Estimation
,”
ASME J. Manuf. Sci. Eng.
,
125
(
1
), pp.
21
28
. 10.1115/1.1531113
3.
Yoon
,
M. C.
, and
Chin
,
D. H.
,
2005
, “
Cutting Force Monitoring in the Endmilling Operation for Chatter Detection
,”
Proc. Inst. Mech. Eng. B
,
219
(
6
), pp.
455
465
. 10.1243/095440505X32292
4.
Kuljanic
,
E.
,
Sortino
,
M.
, and
Totis
,
G.
,
2008
, “
Multisensor Approaches for Chatter Detection in Milling
,”
J. Sound Vib.
,
312
(
4
), pp.
672
693
. 10.1016/j.jsv.2007.11.006
5.
Tangjitsitcharoen
,
S.
, and
Moriwaki
,
T.
,
2008
, “
Intelligent Monitoring and Identification of Cutting States of Chips and Chatter on CNC Turning Machine
,”
J. Manuf. Process.
,
10
(
1
), pp.
40
46
. 10.1016/j.manpro.2008.01.001
6.
Kuljanic
,
E.
,
Totis
,
G.
, and
Sortino
,
M.
,
2009
, “
Development of an Intelligent Multisensor Chatter Detection System in Milling
,”
Mech. Syst. Signal Process.
,
23
(
5
), pp.
1704
1718
. 10.1016/j.ymssp.2009.01.003
7.
Eppel
,
A.
,
Enikov
,
E. T.
,
Insperger
,
T.
, and
Gabor
,
S.
,
2010
, “
Feasibility Study of Optical Detection of Chatter Vibration During Milling
,”
Int. J. Optomechatronics
,
4
(
2
), pp.
195
214
. 10.1080/15599612.2010.484520
8.
Kakinuma
,
Y.
,
Sudo
,
Y.
, and
Aoyama
,
T.
,
2011
, “
Detection of Chatter Vibration in End Milling Applying Disturbance Observer
,”
CIRP Ann.
,
60
(
1
), pp.
109
112
. 10.1016/j.cirp.2011.03.080
9.
Tsai
,
N. C.
,
Chen
,
D. C.
, and
Lee
,
R. M.
,
2009
, “
Chatter Prevention and Improved Finish of Workpiece for a Milling Process
,”
Proc. Inst. Mech. Eng. B
,
224
(
4
), pp.
579
588
. 10.1243/09544054JEM1601
10.
Tsai
,
N.-C.
,
Chen
,
D.-C.
, and
Lee
,
R.-M.
,
2010
, “
Chatter Prevention for Milling Process by Acoustic Signal Feedback
,”
Int. J. Adv. Manuf. Technol.
,
47
(
9
), pp.
1013
1021
. 10.1007/s00170-009-2245-y
11.
Vela-Martínez
,
L.
,
Carlos Jauregui-Correa
,
J.
,
Rodriguez
,
E.
, and
Alvarez-Ramirez
,
J.
,
2010
, “
Using Detrended Fluctuation Analysis to Monitor Chattering in Cutter Tool Machines
,”
Int. J. Mach. Tools Manuf.
,
50
(
7
), pp.
651
657
. 10.1016/j.ijmachtools.2010.03.012
12.
Wang
,
L.
, and
Liang
,
M.
,
2009
, “
Chatter Detection Based on Probability Distribution of Wavelet Modulus Maxima
,”
Robot. Comput. Integ. Manuf.
,
25
(
6
), pp.
989
998
. 10.1016/j.rcim.2009.04.011
13.
Yao
,
Z.
,
Mei
,
D.
, and
Chen
,
Z.
,
2010
, “
On-line Chatter Detection and Identification Based on Wavelet and Support Vector Machine
,”
J. Mater. Process. Technol.
,
210
(
5
), pp.
713
719
. 10.1016/j.jmatprotec.2009.11.007
14.
Zhang
,
C. L.
,
Yue
,
X.
,
Jiang
,
Y. T.
, and
Zheng
,
W.
,
2010
, “
A Hybrid Approach of ANN and HMM for Cutting Chatter Monitoring
,”
Adv. Mater. Res.
,
97–101
, pp.
3225
3232
. 10.4028/www.scientific.net/AMR.97-101.3225
15.
Tansel
,
I. N.
,
Li
,
M.
,
Demetgul
,
M.
,
Bickraj
,
K.
,
Kaya
,
B.
, and
Ozcelik
,
B.
,
2012
, “
Detecting Chatter and Estimating Wear From the Torque of End Milling Signals by Using Index Based Reasoner (IBR)
,”
Int. J. Adv. Manuf. Technol.
,
58
(
1
), pp.
109
118
. 10.1007/s00170-010-2838-5
16.
Yoneoka
,
T.
,
Kakinuma
,
Y.
,
Ohnishi
,
K.
, and
Aoyama
,
T.
,
2012
, “
Disturbance Observer–Based In-Process Detection and Suppression of Chatter Vibration
,”
Procedia CIRP
,
1
, pp.
44
49
. 10.1016/j.procir.2012.04.006
17.
Cao
,
H.
,
Lei
,
Y.
, and
He
,
Z.
,
2013
, “
Chatter Identification in End Milling Process Using Wavelet Packets and Hilbert–Huang Transform
,”
Int. J. Mach. Tools Manuf.
,
69
, pp.
11
19
. 10.1016/j.ijmachtools.2013.02.007
18.
Shimoda
,
T.
,
Fujimoto
,
H.
,
Kumagai
,
N.
, and
Terada
,
Y.
,
2017
, “
External Sensorless Adaptive Chatter Avoidance in NC Machining by Applying Disturbance Observer Using High Resolution Linear Encoder
,”
2017 IEEE International Conference on Advanced Intelligent Mechatronics (AIM)
,
Munich, Germany
,
June 26–30
, pp.
879
884
.
19.
Liu
,
C.
,
Zhu
,
L.
, and
Ni
,
C.
,
2018
, “
Chatter Detection in Milling Process Based on VMD and Energy Entropy
,”
Mech. Syst. Signal Process.
,
105
, pp.
169
182
. 10.1016/j.ymssp.2017.11.046
20.
Aslan
,
D.
, and
Altintas
,
Y.
,
2018
, “
On-line Chatter Detection in Milling Using Drive Motor Current Commands Extracted From CNC
,”
Int. J. Mach. Tools Manuf.
,
13
, pp.
64
80
. 10.1016/j.ijmachtools.2018.04.007
21.
Kothuru
,
A.
,
Nooka
,
S. P.
, and
Liu
,
R.
,
2018
, “
Audio-Based Tool Condition Monitoring in Milling of the Workpiece Material With the Hardness Variation Using Support Vector Machines and Convolutional Neural Networks
,”
ASME J. Manuf. Sci. Eng.
,
140
(
11
), p.
111006
. 10.1115/1.4040874
22.
Swan
,
S.
,
Bin Abdullah
,
M. S.
,
Kim
,
D.
,
Nguyen
,
D.
, and
Kwon
,
P.
,
2018
, “
Tool Wear of Advanced Coated Tools in Drilling of CFRP
,”
ASME J. Manuf. Sci. Eng.
,
140
(
11
), p.
111018
. 10.1115/1.4040916
23.
Cen
,
L.
,
Melkote
,
S. N.
,
Castle
,
J.
, and
Appelman
,
H.
,
2018
, “
A Method for Mode Coupling Chatter Detection and Suppression in Robotic Milling
,”
ASME J. Manuf. Sci. Eng.
,
140
(
8
), p.
081015
. 10.1115/1.4040161
24.
Honeycutt
,
A.
, and
Schmitz
,
T. L.
,
2018
, “
Milling Bifurcations: A Review of Literature and Experiment
,”
ASME J. Manuf. Sci. Eng.
,
140
(
12
), p.
120801
. 10.1115/1.4041325
25.
Honeycutt
,
A.
, and
Schmitz
,
T.
,
2016
, “
Surface Location Error and Surface Roughness for Period-N Milling Bifurcations
,”
ASME J. Manuf. Sci. Eng.
,
139
(
6
), p.
061010
. 10.1115/1.4035371
26.
Honeycutt
,
A.
, and
Schmitz
,
T. L.
,
2016
, “
Milling Stability Interrogation by Subharmonic Sampling
,”
ASME J. Manuf. Sci. Eng.
,
139
(
4
), p.
041009
. 10.1115/1.4034894
27.
Honeycutt
,
A.
, and
Schmitz
,
T.
,
2016
, “
A Numerical and Experimental Investigation of Period-n Bifurcations in Milling
,”
ASME J. Manuf. Sci. Eng.
,
139
(
1
), p.
011003
. 10.1115/1.4034138
28.
Oleaga
,
I.
,
Pardo
,
C.
,
Zulaika
,
J. J.
, and
Bustillo
,
A.
,
2018
, “
A Machine-Learning Based Solution for Chatter Prediction in Heavy-Duty Milling Machines
,”
Measurement
,
128
, pp.
34
44
. 10.1016/j.measurement.2018.06.028
29.
Hoang
,
D.-T.
, and
Kang
,
H.-J.
,
2019
, “
A Survey on Deep Learning Based Bearing Fault Diagnosis
,”
Neurocomputing
,
335
, pp.
327
335
. 10.1016/j.neucom.2018.06.078
30.
Sobie
,
C.
,
Freitas
,
C.
, and
Nicolai
,
M.
,
2018
, “
Simulation-Driven Machine Learning: Bearing Fault Classification
,”
Mech. Syst. Signal Process.
,
99
, pp.
403
419
. 10.1016/j.ymssp.2017.06.025
31.
Verstraete
,
D.
,
Ferrada
,
A.
,
Droguett
,
E. L.
,
Meruane
,
V.
, and
Modarres
,
M.
,
2017
, “
Deep Learning Enabled Fault Diagnosis Using Time-Frequency Image Analysis of Rolling Element Bearings
,”
Shock Vibration
,
2017
(
17
), pp.
17
17
. 10.1155/2017/5067651
32.
Zhang
,
W.
,
Li
,
C.
,
Peng
,
G.
,
Chen
,
Y.
, and
Zhang
,
Z.
,
2018
, “
A Deep Convolutional Neural Network With new Training Methods for Bearing Fault Diagnosis Under Noisy Environment and Different Working Load
,”
Mech. Syst. Signal Process.
,
100
, pp.
439
453
. 10.1016/j.ymssp.2017.06.022
33.
Zhao
,
R.
,
Yan
,
R.
,
Chen
,
Z.
,
Mao
,
K.
,
Wang
,
P.
, and
Gao
,
R. X.
,
2019
, “
Deep Learning and Its Applications to Machine Health Monitoring
,”
Mech. Syst. Signal Process.
,
115
, pp.
213
237
. 10.1016/j.ymssp.2018.05.050
34.
Chen
,
C.
,
Hua
,
Z.
,
Zhang
,
R.
,
Liu
,
G.
, and
Wen
,
W.
,
2020
, “
Automated Arrhythmia Classification Based on a Combination Network of CNN and LSTM
,”
Biomed. Signal Process. Control
,
57
, p.
101819
. 10.1016/j.bspc.2019.101819
35.
Chen
,
Y.
,
Zhang
,
S.
,
Zhang
,
W.
,
Peng
,
J.
, and
Cai
,
Y.
,
2019
, “
Multifactor Spatio-Temporal Correlation Model Based on a Combination of Convolutional Neural Network and Long Short-Term Memory Neural Network for Wind Speed Forecasting
,”
Energy Convers. Manage.
,
185
, pp.
783
799
. 10.1016/j.enconman.2019.02.018
36.
Fu
,
Q.
,
Wang
,
C.
, and
Han
,
X.
,
2020
, “
A CNN-LSTM Network With Attention Approach for Learning Universal Sentence Representation in Embedded System
,”
Microprocess. Microsyst.
,
74
, p.
103051
. 10.1016/j.micpro.2020.103051
37.
Hua
,
Y.
,
Mou
,
L.
, and
Zhu
,
X. X.
,
2019
, “
Recurrently Exploring Class-Wise Attention in a Hybrid Convolutional and Bidirectional LSTM Network for Multi-Label Aerial Image Classification
,”
ISPRS J. Photogramm. Remote Sens.
,
149
, pp.
188
199
. 10.1016/j.isprsjprs.2019.01.015
38.
Pei
,
S.
,
Qin
,
H.
,
Zhang
,
Z.
,
Yao
,
L.
,
Wang
,
Y.
,
Wang
,
C.
,
Liu
,
Y.
,
Jiang
,
Z.
,
Zhou
,
J.
, and
Yi
,
T.
,
2019
, “
Wind Speed Prediction Method Based on Empirical Wavelet Transform and New Cell Update Long Short-Term Memory Network
,”
Energy Convers. Manage.
,
196
, pp.
779
792
. 10.1016/j.enconman.2019.06.041
39.
Yıldırım
,
Ö
,
2018
, “
A Novel Wavelet Sequence Based on Deep Bidirectional LSTM Network Model for ECG Signal Classification
,”
Comput. Biol. Med.
,
96
, pp.
189
202
. 10.1016/j.compbiomed.2018.03.016
40.
Yıldırım
,
Ö
,
Baloglu
,
U.
,
Tan
,
R. S.
,
Ciaccio
,
E.
, and
Acharya
,
U. R.
,
2019
, “
A New Approach for Arrhythmia Classification Using Deep Coded Features and LSTM Networks
,”
Comput. Meth. Prog. Biomed.
,
176
, pp.
121
133
. 10.1016/j.cmpb.2019.05.004
41.
Zhang
,
B.
,
Li
,
J.
,
Quan
,
L.
,
Chen
,
Y.
, and
,
Q.
,
2019
, “
Sequence-Based Prediction of Protein-Protein Interaction Sites by Simplified Long Short-Term Memory Network
,”
Neurocomputing
,
357
, pp.
86
100
. 10.1016/j.neucom.2019.05.013
42.
Zhou
,
Y.
,
Huang
,
Y.
,
Pang
,
J.
, and
Wang
,
K.
,
2019
, “
Remaining Useful Life Prediction for Supercapacitor Based on Long Short-Term Memory Neural Network
,”
J. Power Sources
,
440C
, p.
227149
. 10.1016/j.jpowsour.2019.227149
43.
Insperger
,
T.
,
Stépán
,
G.
,
Bayly
,
P. V.
, and
Mann
,
B. P.
,
2003
, “
Multiple Chatter Frequencies in Milling Processes
,”
J. Sound Vib.
,
262
(
2
), pp.
333
345
. 10.1016/S0022-460X(02)01131-8
44.
Jemielniak
,
K.
, and
Widota
,
A.
,
1989
, “
Numerical Simulation of Non-Linear Chatter Vibration in Turning
,”
Int. J. Mach. Tools Manuf.
,
29
(
2
), pp.
239
247
. 10.1016/0890-6955(89)90035-7
45.
Varanasi
,
K. K.
, and
Nayfeh
,
S. A.
,
2004
, “
The Dynamics of Lead-Screw Drives: Low-Order Modeling and Experiments
,”
J. Dyn. Syst. Meas. Control
,
126
, pp.
388
396
. 10.1115/1.1771690
46.
Altintas
,
Y.
,
2012
,
Manufacturing Automation: Metal Cutting Mechanics, Machine Tool Vibrations, and CNC Design
,
Cambridge University Press
,
London
.
47.
Insperger
,
T.
, and
Stépán
,
G.
,
2011
,
Semi-Discretization for Time-Delay Systems: Stability and Engineering Applications
,
Springer
,
New York
.
48.
Mann
,
B. P.
,
Insperger
,
T.
,
Bayly
,
P. V.
, and
Stépán
,
G.
,
2003
, “
Stability of Up-Milling and Down-Milling, Part 2: Experimental Verification
,”
Int. J. Mach. Tools Manuf.
,
43
(
1
), pp.
35
40
. 10.1016/S0890-6955(02)00160-8
You do not currently have access to this content.