Abstract

This paper develops a tool path optimization method for robotic surface machining by sampling-based motion planning algorithms. In the surface machining process, the tool-tip position needs to strictly follow the tool path curve and the posture of the tool axis should be limited in a certain range. But the industrial robot has at least six degrees-of-freedom (Dof) and has redundant Dofs for surface machining. Therefore, the tool motion of surface machining can be optimized using the redundant Dofs considering the tool path constraints and limits of the tool axis orientation. Due to the complexity of the problem, the sampling-based motion planning method has been chosen to find the solution, which randomly explores the configuration space of the robot and generates a discrete path of valid robot state. During the solving process, the joint space of the robot is chosen as the configuration space of the problem and the constraints for the tool-tip following requirements are in the operation space. Combined with general collision checking, the limited region of the tool axis vector is used to verify the state’s validity of the configuration space. In the optimization process, the sum of the path length of each joint of the robot is set as the optimization objective. The algorithm is developed based on the open motion planning library (OMPL), which contains the state-of-the-art sampling-based motion planners. Finally, two examples are used to demonstrate the effiectiveness and optimality of the method.

References

References
1.
Farouki
,
R. T.
, and
Li
,
S.
,
2013
, “
Optimal Tool Orientation Control for 5-Axis CNC Milling With Ball-End Cutters
,”
Comput. Aided Geom. Des.
,
30
(
2
), pp.
226
239
. 10.1016/j.cagd.2012.11.003
2.
Farouki
,
R. T.
,
Han
,
C. Y.
, and
Li
,
S.
,
2014
, “
Inverse Kinematics for Optimal Tool Orientation Control in 5-Axis CNC Machining
,”
Comput. Aided Geom. Des.
,
31
(
1
), pp.
13
26
. 10.1016/j.cagd.2013.11.002
3.
Zhu
,
Y.
,
Chen
,
Z.-T.
,
Ning
,
T.
, and
Xu
,
R.-F.
,
2016
, “
Tool Orientation Optimization for 3 + 2-Axis CNC Machining of Sculptured Surface
,”
Comput.-Aided Des.
,
77
(
1
), pp.
60
72
. 10.1016/j.cad.2016.02.007
4.
Wu
,
B.
,
Liang
,
M.
,
Han
,
F.
, and
Zhang
,
Y.
,
2019
, “
Optimization of Cutter Orientation for Multi-axis NC Machining Based on Minimum Energy Consumption of Motion Axes
,”
Int. J. Adv. Manuf. Technol.
,
104
(
5
), pp.
1855
1867
. 10.1007/s00170-019-03926-5
5.
Tsainis
,
A. M.
,
Papazafeiropoulos
,
G.
, and
Stergiou
,
C.
,
2019
, “
A Novel Convex Hull Method for Optimum Multi-Point 5-Axis Tool Positioning for Machining of Complex Sculptured Surfaces
,”
Int. J. Adv. Manuf. Technol.
,
103
(
9
), pp.
4369
4383
. 10.1007/s00170-019-03833-9
6.
Huang
,
T.
,
Zhang
,
X.-M.
,
Leopold
,
J.
, and
Ding
,
H.
,
2018
, “
Tool Orientation Planning in Milling With Process Dynamic Constraints: A Minimax Optimization Approach
,”
ASME J. Manuf. Sci. Eng.
,
140
(
11
), p.
111002
. 10.1115/1.4040872
7.
Kavraki
,
L. E.
,
Svestka
,
P.
,
Latombe
,
J.-C.
, and
Overmars
,
M. H.
,
1996
, “
Probabilistic Roadmaps for Path Planning in High-Dimensional Configuration Spaces
,”
IEEE Trans. Rob. Autom.
,
12
(
4
), pp.
566
580
. 10.1109/70.508439
8.
LaValle
,
S. M.
, and
Kuffner
,
J. J.
,
2001
, “
Randomized Kinodynamic Planning
,”
Int. J. Rob. Res.
,
20
(
5
), pp.
378
400
. 10.1177/02783640122067453
9.
Hsu
,
D.
,
Latombe
,
J.-C.
, and
Motwani
,
R.
,
1997
, “
Path Planning in Expansive Configuration Spaces
,”
Proc. Int. Conf. Rob. Autom.
,
3
(
1
), pp.
2719
2726
. 10.1109/ROBOT.1997.619371
10.
Plaku
,
E.
,
Bekris
,
K. E.
,
Chen
,
B. Y.
,
Ladd
,
A. M.
, and
Kavraki
,
L. E.
,
2005
, “
Sampling-Based Roadmap of Trees for Parallel Motion Planning
,”
IEEE Trans. Rob.
,
21
(
4
), pp.
597
608
. 10.1109/TRO.2005.847599
11.
Barraquand
,
J.
,
Kavraki
,
L.
,
Latombe
,
J.-C.
,
Motwani
,
R.
,
Li
,
T.-Y.
, and
Raghavan
,
P.
,
1997
, “
A Random Sampling Scheme for Path Planning
,”
Int. J. Rob. Res.
,
16
(
6
), pp.
759
774
. 10.1177/027836499701600604
12.
Canny
,
J.
,
1988
,
The Complexity of Robot Motion Planning
, Vol.
1987
,
Mass: MIT Press
,
Cambridge
.
13.
Jaillet
,
L.
,
Cortés
,
J.
, and
Siméon
,
T.
,
2010
, “
Sampling-Based Path Planning on Configuration-Space Costmaps
,”
IEEE Trans. Rob.
,
26
(
4
), pp.
635
646
. 10.1109/TRO.2010.2049527
14.
Berenson
,
D.
,
Simeon
,
T.
, and
Srinivasa
,
S. S.
,
2011
, “
Addressing Cost-Space Chasms in Manipulation Planning
,”
IEEE Int. Conf. Rob. Autom.
,
1
(
1
) pp.
4561
4568
. 10.1109/ICRA.2011.5979797
15.
Karaman
,
S.
, and
Frazzoli
,
E.
,
2011
, “
Sampling-Based Algorithms for Optimal Motion Planning
,”
Int. J. Rob. Res.
,
30
(
7
), pp.
846
894
. 10.1177/0278364911406761
16.
Jaillet
,
L.
, and
Porta
,
J. M.
,
2013
, “
Path Planning Under Kinematic Constraints by Rapidly Exploring Manifolds
,”
IEEE Trans. Rob.
,
29
(
1
), pp.
105
117
. 10.1109/TRO.2012.2222272
17.
Kim
,
B.
,
Um
,
T. T.
,
Suh
,
C.
, and
Park
,
F. C.
,
2016
, “
Tangent Bundle RRT: A Randomized Algorithm for Constrained Motion Planning
,”
Robotica
,
34
(
1
), pp.
202
225
. 10.1017/S0263574714001234
18.
Kingston
,
Z.
,
Moll
,
M.
, and
Kavraki
,
L. E.
,
2019
, “
Exploring Implicit Spaces for Constrained Sampling-Based Planning
,”
Int. J. Rob. Res.
,
38
(
10–11
), pp.
1151
1178
. 10.1177/0278364919868530
19.
Cheng
,
K.
(Editor)
2008
,
Machining Dynamics: Theory, Applications and Practices
,
Springer
,
London
.
20.
Liu
,
X. W.
, and
Cheng
,
K.
,
2005
, “
Modelling the Machining Dynamics of Peripheral Milling
,”
Int. J. Mach. Tools Manuf.
,
45
(
11
), pp.
1301
1320
. 10.1016/j.ijmachtools.2005.01.019
21.
Liu
,
X. W.
,
Cheng
,
K.
,
Longstaff
,
A. P.
,
Widiyarto
,
M. H.
, and
Ford
,
D.
,
2005
, “
Improved Dynamic Cutting Force Models in Ball-End Milling Part I: Theoretical Modelling and Experimental Calibration
,”
Int. J. Adv. Manuf. Technol.
,
26
(
5–6
), pp.
457
465
. 10.1007/s00170-003-2014-2
22.
Jiang
,
Z.
,
Ding
,
J.
,
Song
,
Z.
,
Du
,
L.
, and
Wang
,
W.
,
2016
, “
Modeling and Simulation of Surface Morphology Abnormality of ‘S’ Test Piece Machined by Five-Axis CNC Machine Tool
,”
Int. J. Adv. Manuf. Technol.
,
85
(
9
), pp.
2745
2759
. 10.1007/s00170-015-8079-x
You do not currently have access to this content.