Abstract

Flexible electronic devices have several advantages and multiple current or potential applications. However, the reliability and durability of their metal components (which often exist) may suffer from large and repeated strains during many applications. Carbon nanotube (CNT)-metal composite films that were laser-sintered on flexible substrates were shown to be very promising in addressing the reliability and durability issues. However, to the authors’ best knowledge, CNT–metal interfaces in a laser-sintered CNT–metal composite film on a polymer substrate and the composite–polymer interface have not been sufficiently characterized and understood. In this paper, CNT–silver composite films were produced on polyimide substrates by laser sintering, and the fabricated samples were characterized through scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy. Under the conditions studied, it has been found that: (1) for the CNT–silver interfaces in the composite, a significant amount of Ag–C chemical bonds is unlikely to exist, and (2) for the composite–polyimide interface, mechanical interlocking is expected to play an important role in the interfacial adhesion, while a significant diffusion of silver into the polyimide substrate is not observed. Besides, chemical reactions have likely occurred around the interface, causing the formation of Ag2O due to the reaction between silver from the composite and oxygen (in a certain form) from the polyimide substrate.

References

References
1.
Banks
,
M.
,
2010
, “
Flexible Electronics Enters the E-Reader Market
,”
Phys. World
,
23
(
2
), p.
8
.
2.
Cordill
,
M. J.
,
2010
, “
Flexible Film Systems: Current Understanding and Future Prospects
,”
JOM
,
62
(
6
), pp.
9
14
. 10.1007/s11837-010-0096-5
3.
Perelaer
,
J.
,
Smith
,
P. J.
,
Mager
,
D.
,
Soltman
,
D.
,
Volkman
,
S. K.
,
Subramanian
,
V.
,
Korvink
,
J. G.
, and
Schubert
,
U. S.
,
2010
, “
Printed Electronics: The Challenges Involved in Printing Devices, Interconnects, and Contacts Based on Inorganic Materials
,”
J. Mater. Chem.
,
20
(
39
), pp.
8446
8453
. 10.1039/c0jm00264j
4.
Wong
,
W. S.
, and
Salleo
,
A.
,
2009
,
Flexible Electronics: Materials and Applications
,
Springer Science+Business Media, LLC
,
New York, NY
.
5.
Akogwu
,
O.
,
Kwabi
,
D.
,
Midturi
,
S.
,
Eleruja
,
M.
,
Babatope
,
B.
, and
Soboyejo
,
W. O.
,
2010
, “
Large Strain Deformation and Cracking of Nano-scale Gold Films on PDMS Substrate
,”
Mater. Sci. Eng., B
,
170
(
1–3
), pp.
32
40
. 10.1016/j.mseb.2010.02.023
6.
Begley
,
M. R.
,
Scott
,
O. N.
,
Utz
,
M.
, and
Bart-Smith
,
H.
,
2009
, “
Fracture of Nanoscale Copper Films on Elastomer Substrates
,”
Appl. Phys. Lett.
,
95
(
23
), p.
231914
. 10.1063/1.3268458
7.
Bakshi
,
S. R.
,
Lahiri
,
D.
, and
Agarwal
,
A.
,
2010
, “
Carbon Nanotube Reinforced Metal Matrix Composites—A Review
,”
Int. Mater. Rev.
,
55
(
1
), pp.
41
64
. 10.1179/095066009X12572530170543
8.
Radhamani
,
A. V.
,
Lau
,
H. C.
, and
Ramakrishna
,
S.
,
2018
, “
CNT-Reinforced Metal and Steel Nanocomposites: A Comprehensive Assessment of Progress and Future Directions
,”
Composites Part A
,
114
, pp.
170
187
. 10.1016/j.compositesa.2018.08.010
9.
Hwang
,
H.-J.
,
Joo
,
S.-J.
, and
Kim
,
H.-S.
,
2015
, “
Copper Nanoparticle/Multiwalled Carbon Nanotube Composite Films With High Electrical Conductivity and Fatigue Resistance Fabricated via Flash Light Sintering
,”
ACS Appl. Mater. Interfaces
,
7
(
45
), pp.
25413
25423
. 10.1021/acsami.5b08112
10.
Zhao
,
D.
,
Liu
,
T.
,
Park
,
J. G.
,
Zhang
,
M.
,
Chen
,
J.-M.
, and
Wang
,
B.
,
2012
, “
Conductivity Enhancement of Aerosol-Jet Printed Electronics by Using Silver Nanoparticles Ink With Carbon Nanotubes
,”
Microelectron. Eng.
,
96
, pp.
71
75
. 10.1016/j.mee.2012.03.004
11.
Wu
,
B.
,
Laser-Based Fabrication of Carbon Nanotube–Metal Composites on Flexible Substrates. Pending US patent application. Application No. 15729078, Assignee: Purdue Research Foundation, Filed on October 10 2017 (the previous related provisional patent Application No. 62406556, Filed on October 11, 2016)
.
12.
Kang
,
Z.
,
Wu
,
B.
,
Wang
,
R.
, and
Wu
,
W.
,
2018
, “
Laser-Based Fabrication of Carbon Nanotube—Silver Composites With Enhanced Fatigue Performance Onto a Flexible Substrate
,”
ASME J. Manuf. Sci. Eng.
,
140
(
9
), p.
091005
. 10.1115/1.4039492
13.
Ko
,
S. H.
,
Pan
,
H.
,
Grigoropoulos
,
C. P.
,
Luscombe
,
C. K.
,
Fréchet
,
J. M. J.
, and
Poulikakos
,
D.
,
2007
, “
All-Inkjet-Printed Flexible Electronics Fabrication on a Polymer Substrate by Low-Temperature High-Resolution Selective Laser Sintering of Metal Nanoparticles
,”
Nanotechnology
,
18
(
34
), p.
345202
. 10.1088/0957-4484/18/34/345202
14.
Ko
,
S. H.
,
Pan
,
H.
,
Lee
,
D.
,
Grigoropoulos
,
C. P.
, and
Park
,
H. K.
,
2010
, “
Nanoparticle Selective Laser Processing for a Flexible Display Fabrication
,”
Jpn. J. Appl. Phys.
,
49
(
5
), p.
05EC03
. 10.1143/jjap.49.05ec03
15.
Pan
,
H.
,
Ko
,
S. H.
, and
Grigoropoulos
,
C. P.
,
2008
, “
The Coalescence of Supported Gold Nanoparticles Induced by Nanosecond Laser Irradiation
,”
Appl. Phys. A: Mater. Sci. Process.
,
90
(
2
), pp.
247
253
. 10.1007/s00339-007-4320-2
16.
Ji
,
S. Y.
,
Ajmal
,
C. M.
,
Kim
,
T.
,
Chang
,
W. S.
, and
Baik
,
S.
,
2017
, “
Laser Patterning of Highly Conductive Flexible Circuits
,”
Nanotechnology
,
28
(
16
), p.
165301
. 10.1088/1361-6528/aa66a2
17.
Mather
,
R. R.
,
2009
, “Surface Modification of Textiles by Plasma Treatments,”
Surface Modification of Textiles
,
Q.
Wei
, ed.,
Woodhead Publishing Limited
,
Cambridge, UK
, pp.
296
317
.
18.
Fairley
,
N.
,
2009
,
CasaXPS Manual 2.3.15 Introduction to XPS and AES
,
Casa Software Ltd
,
Teignmouth, UK
.
19.
Georgantzinos
,
S. K.
, and
Anifantis
,
N. K.
,
2009
, “
Vibration Analysis of Multi-Walled Carbon Nanotubes Using a Spring–Mass Based Finite Element Model
,”
Comput. Mater. Sci.
,
47
(
1
), pp.
168
177
. 10.1016/j.commatsci.2009.07.006
20.
Jackson
,
S. T.
, and
Nuzzo
,
R. G.
,
1995
, “
Determining Hybridization Differences for Amorphous Carbon From the XPS C 1s Envelope
,”
Appl. Surf. Sci.
,
90
(
2
), pp.
195
203
. 10.1016/0169-4332(95)00079-8
21.
Grunze
,
M.
, and
Lamb
,
R. N.
,
1988
, “
Adhesion of Vapour Phase Deposited Ultra-Thin Polyimide Films on Polycrystalline Silver
,”
Surf. Sci.
,
204
(
1–2
), pp.
183
212
. 10.1016/0039-6028(88)90276-2
22.
Louette
,
P.
,
Bodino
,
F.
, and
Pireaux
,
J.-J.
,
2005
, “
Polyimide XPS Reference Core Level and Energy Loss Spectra
,”
Surf. Sci. Spectra
,
12
(
1
), pp.
121
126
. 10.1116/11.20051101
23.
Tjeng
,
L. H.
,
Meinders
,
M. B. J.
,
Van Elp
,
J.
,
Ghijsen
,
J.
,
Sawatzky
,
G. A.
, and
Johnson
,
R. L.
,
1990
, “
Electronic Structure of Ag2O
,”
Phys. Rev. B
,
41
(
5
), pp.
3190
3199
. 10.1103/PhysRevB.41.3190
24.
Gaarenstroom
,
S. W.
, and
Winograd
,
N.
,
1977
, “
Initial and Final State Effects in the ESCA Spectra of Cadmium and Silver Oxides
,”
J. Chem. Phys.
,
67
(
8
), pp.
3500
3506
. 10.1063/1.435347
25.
Kaushik
,
V. K.
,
1991
, “
XPS Core Level Spectra and Auger Parameters for Some Silver Compounds
,”
J. Electron Spectrosc. Relat. Phenom.
,
56
(
3
), pp.
273
277
. 10.1016/0368-2048(91)85008-H
26.
NIST X-ray Photoelectron Spectroscopy Database, NIST Standard Reference Database Number 20
,
National Institute of Standards and Technology
,
Gaithersburg MD
. doi: 10.18434/T4T88K
27.
Beamson
,
G.
, and
Briggs
,
D.
,
1992
,
High Resolution XPS of Organic Polymers the Scienta ESCA300 Database
,
John Wiley & Sons
,
Chichester
,
214
.
28.
Macková
,
A.
,
Švorčík
,
V.
,
Sajdl
,
P.
,
Strýhal
,
Z.
,
Pavlík
,
J.
,
Malinský
,
P.
, and
Šlouf
,
M.
,
2008
, “
RBS, XPS, and TEM Study of Metal and Polymer Interface Modified by Plasma Treatment
,”
Vacuum
,
82
(
2
), pp.
307
310
. 10.1016/j.vacuum.2007.07.027
29.
Galuska
,
A. A.
,
Uht
,
J. C.
, and
Marquez
,
N.
,
1988
, “
Reactive and Nonreactive Ion Mixing of Ti Films on Carbon Substrates
,”
J. Vac. Sci. Technol., A
,
6
(
1
), pp.
110
122
. 10.1116/1.574992
30.
Håkansson
,
K. L.
,
Johansson
,
H. I. P.
, and
Johansson
,
L. I.
,
1994
, “
High-Resolution Core-Level Study of Hexagonal WC(0001)
,”
Phys. Rev. B
,
49
(
3
), pp.
2035
2039
. 10.1103/PhysRevB.49.2035
31.
Kim
,
T. H.
,
2014
, “Bonding,”
The International Academy for Production Engineering
,
L.
Laperrière
,
G.
Reinhart
, eds.,
CIRP Encyclopedia of Production Engineering
, Vol.
4
,
Springer-Verlag
,
Berlin, Heidelberg
, pp.
102
105
.
32.
Faupel
,
F.
,
Willecke
,
R.
, and
Thran
,
A.
,
1998
, “
Diffusion of Metals in Polymers
,”
Mater. Sci. Eng. R
,
22
(
1
), pp.
1
55
. 10.1016/S0927-796X(97)00020-X
33.
Foitzik
,
A.
, and
Faupel
,
F.
,
1990
, “
Structural Investigation of the Silver-Polyimide Interface by Cross-Sectional TEM and Ion-Beam Sputtering
,”
MRS Online Proce. Libr. Arch.
,
203
, pp.
59
64
. 10.1557/PROC-203-59
34.
Faupel
,
F.
,
Zaporojtchenko
,
V.
,
Thran
,
A.
,
Strunskus
,
T.
, and
Kiene
,
M.
,
2005
, “Metal Diffusion in Polymers and on Polymer Surfaces,”
D.
Gupta
, ed.,
Diffusion Processes in Advanced Technological Materials
,
Springer
,
Berlin Heidelberg
, pp.
333
363
.
35.
Mehrer
,
H.
,
2007
,
Diffusion in Solids: Fundamentals, Methods, Materials, Diffusion-Controlled Processes
,
Springer-Verlag
,
Berlin Heidelberg
.
36.
Lavrenko
,
V. A.
,
Malyshevskaya
,
A. I.
,
Kuznetsova
,
L. I.
,
Litvinenko
,
V. F.
, and
Pavlikov
,
V. N.
,
2006
, “
Features of High-Temperature Oxidation in air of Silver and Alloy Ag-Cu, and Adsorption of Oxygen on Silver
,”
Powder Metall. Met. Ceram.
,
45
(
9–10
), pp.
476
480
. 10.1007/s11106-006-0108-8
37.
Ardila-Rodríguez
,
L. A.
,
Medeiros
,
B. B.
,
de Oliveira
,
A. C.
, and
Travessa
,
D. N.
,
2019
, “
Al/MWCNT Composite Layer Deposition on Aluminum Alloy Substrate by Selective Laser Melting and Flame Spray
,”
ASME J. Manuf. Sci. Eng.
,
141
(
10
), p.
101010
. 10.1115/1.4044419
You do not currently have access to this content.