Abstract

Aerosol jet printing (AJP) is a direct-write additive manufacturing (AM) method, emerging as the process of choice for the fabrication of a broad spectrum of electronics, such as sensors, transistors, and optoelectronic devices. However, AJP is a highly complex process, prone to intrinsic gradual drifts. Consequently, real-time process monitoring and control in AJP is a bourgeoning need. The goal of this work is to establish an integrated, smart platform for in situ and real-time monitoring of the functional properties of AJ-printed electronics. In pursuit of this goal, the objective is to forward a multiple-input, single-output (MISO) intelligent learning model—based on sparse representation classification (SRC)—to estimate the functional properties (e.g., resistance) in situ as well as in real-time. The aim is to classify the resistance of printed electronic traces (lines) as a function of AJP process parameters and the trace morphology characteristics (e.g., line width, thickness, and cross-sectional area (CSA)). To realize this objective, line morphology is captured using a series of images, acquired: (i) in situ via an integrated high-resolution imaging system and (ii) in real-time via the AJP standard process monitor camera. Utilizing image processing algorithms developed in-house, a wide range of 2D and 3D morphology features are extracted, constituting the primary source of data for the training, validation, and testing of the SRC model. The four-point probe method (also known as Kelvin sensing) is used to measure the resistance of the deposited traces and as a result, to define a priori class labels. The results of this study exhibited that using the presented approach, the resistance (and potentially, other functional properties) of printed electronics can be estimated both in situ and in real-time with an accuracy of ≥ 90%.

References

References
1.
Parekh
,
D. P.
,
Cormier
,
D.
, and
Dickey
,
M. D.
,
2015
, “Chapter 8: Multifunctional Printing: Incorporating Electronics Into 3D Parts Made by Additive Manufacturing,”
Additive Manufacturing
,
A.
Bandyopadhyay
, and
S.
Bose
, eds.,
CRC Press
,
Boca Raton, FL
, p.
215
.
2.
Jones
,
C. S.
,
Lu
,
X.
,
Renn
,
M.
,
Stroder
,
M.
, and
Shih
,
W.-S.
,
2010
, “
Aerosol-Jet-Printed, High-Speed, Flexible Thin-Film Transistor Made Using Single-Walled Carbon Nanotube Solution
,”
Microelectron. Eng.
,
87
(
3
), pp.
434
437
. 10.1016/j.mee.2009.05.034
3.
Kim
,
S. H.
,
Hong
,
K.
,
Lee
,
K. H.
, and
Frisbie
,
C. D.
,
2013
, “
Performance and Stability of Aerosol-Jet-Printed Electrolyte-Gated Transistors Based on Poly (3-Hexylthiophene)
,”
ACS Appl. Mater. Interfaces
,
5
(
14
), pp.
6580
6585
. 10.1021/am401200y
4.
Liu
,
R.
,
Shen
,
F.
,
Ding
,
H.
,
Lin
,
J.
,
Gu
,
W.
,
Cui
,
Z.
, and
Zhang
,
T.
,
2013
, “
All-Carbon-Based Field Effect Transistors Fabricated by Aerosol Jet Printing on Flexible Substrates
,”
J. Micromech. Microeng.
,
23
(
6
), p.
065027
. 10.1088/0960-1317/23/6/065027
5.
Goth
,
C.
,
Putzo
,
S.
, and
Franke
,
J.
, “
Aerosol Jet Printing on Rapid Prototyping Materials for Fine Pitch Electronic Applications
,”
Proceedings of IEEE Electronic Components and Technology Conference (ECTC)
,
Lake Buena Vista, FL
,
May 31–June 3
, pp.
1211–
-
1216
.
6.
Liu
,
R.
,
Ding
,
H.
,
Lin
,
J.
,
Shen
,
F.
,
Cui
,
Z.
, and
Zhang
,
T.
,
2012
, “
Fabrication of Platinum-Decorated Single-Walled Carbon Nanotube Based Hydrogen Sensors by Aerosol Jet Printing
,”
Nanotechnology
,
23
(
50
), p.
505301
. 10.1088/0957-4484/23/50/505301
7.
Zhao
,
D.
,
Liu
,
T.
,
Zhang
,
M.
,
Liang
,
R.
, and
Wang
,
B.
,
2012
, “
Fabrication and Characterization of Aerosol-Jet Printed Strain Sensors for Multifunctional Composite Structures
,”
Smart Mater. Struct.
,
21
(
11
), p.
115008
. 10.1088/0964-1726/21/11/115008
8.
Tait
,
J. G.
,
Witkowska
,
E.
,
Hirade
,
M.
,
Ke
,
T.-H.
,
Malinowski
,
P. E.
,
Steudel
,
S.
,
Adachi
,
C.
, and
Heremans
,
P.
,
2015
, “
Uniform Aerosol Jet Printed Polymer Lines With 30 µm Width for 140 ppi Resolution RGB Organic Light Emitting Diodes
,”
Org. Electron.
,
22
(
7
), pp.
40
43
. 10.1016/j.orgel.2015.03.034
9.
Eckstein
,
R.
,
Hernandez-Sosa
,
G.
,
Lemmer
,
U.
, and
Mechau
,
N.
,
2014
, “
Aerosol Jet Printed Top Grids for Organic Optoelectronic Devices
,”
Org. Electron.
,
15
(
9
), pp.
2135
2140
. 10.1016/j.orgel.2014.05.031
10.
Hon
,
K.
,
Li
,
L.
, and
Hutchings
,
I.
,
2008
, “
Direct Writing Technology—Advances and Developments
,”
CIRP Ann.
,
57
(
2
), pp.
601
620
. 10.1016/j.cirp.2008.09.006
11.
King
,
B.
, and
Renn
,
M.
,
2009
, “
Aerosol Jet Direct Write Printing for Mil-Aero Electronic Applications
,”
Proceedings of Lockheed Martin Palo Alto Colloquia
,
Palo Alto, CA
,
Mar. 26
, pp.
1
6
. https://optomec.com/
12.
Gu
,
Y.
,
Gutierrez
,
D.
,
Das
,
S.
, and
Hines
,
D.
,
2017
, “
Inkwells for On-Demand Deposition Rate Measurement in Aerosol-Jet Based 3D Printing
,”
J. Micromech. Microeng.
,
27
(
9
), p.
097001
. 10.1088/1361-6439/aa817f
13.
Salary
,
R.
,
Lombardi
,
J. P.
,
Tootooni
,
M. S.
,
Donovan
,
R.
,
Rao
,
P. K.
,
Borgesen
,
P.
, and
Poliks
,
M. D.
,
2017
, “
Computational Fluid Dynamics Modeling and Online Monitoring of Aerosol Jet Printing Process
,”
ASME J. Manuf. Sci. Eng.
,
139
(
2
), p.
021015
. 10.1115/1.4034591
14.
Salary
,
R.
,
Lombardi
,
J. P.
,
Tootooni
,
M. S.
,
Donovan
,
R.
,
Rao
,
P. K.
, and
Poliks
,
M. D.
,
2016
, “
In Situ Sensor-Based Monitoring and Computational Fluid Dynamics (CFD) Modeling of Aerosol Jet Printing (AJP) Process
,”
ASME 2016 11th International Manufacturing Science and Engineering Conference (MSEC 2016), Virginia Tech
,
Blacksburg, VA
,
June 27—July 1
,
Proc. Paper No. 8535
, p.
V002T004A049
.
15.
Salary
,
R.
,
Lombardi
,
J.
,
Rao
,
P.
, and
Poliks
,
M. D.
,
2017
, “
Online Monitoring of Functional Electrical Properties in Aerosol Jet Printing Additive Manufacturing Process Using Shape-From-Shading Image Analysis
,”
ASME J. Manuf. Sci. Eng.
,
139
(
10
), p.
101010
. 10.1115/1.4036660
16.
Rao
,
P. K.
,
Beyca
,
O. F.
,
Kong
,
Z.
,
Bukkaptanam
,
S. T. S.
,
Case
,
K. E.
, and
Komanduri
,
R.
,
2015
, “
A Graph Theoretic Approach for Quantification of Surface Morphology and Its Application to Chemical Mechanical Planarization (CMP) Process
,”
IIE Trans.
,
47
(
10
), pp.
1088
1111
. 10.1080/0740817X.2014.1001927
17.
Salary
,
R.
,
Lombardi
,
J. P.
,
Rao
,
P. K.
, and
Poliks
,
M. D.
,
2017
, “
Additive Manufacturing (AM) of Flexible Electronic Devices: Online Monitoring of 3D Line Morphology in Aerosol Jet Printing Process Using Shape-From-Shading Image Analysis
,”
ASME 2017 12th International Manufacturing Science and Engineering Conference (MSEC 2017), University of Southern California
,
Los Angeles, CA
,
June 4–8
,
Proc. Paper No. 2947
, p.
V002T001A046
.
18.
Lombardi
,
J. P.
,
Salary
,
R.
,
Weerawarne
,
D. L.
,
Rao
,
P. K.
, and
Poliks
,
M. D.
,
2018
, “
In Situ Image-Based Monitoring and Closed-Loop Control of Aerosol Jet Printing
,”
ASME 2018 13th International Manufacturing Science and Engineering Conference (MSEC 2018), Texas A&M University
,
College Station, TX
,
June 18–22
,
Proc. Paper No. 6487
.
19.
Wadhwa
,
A.
,
2015
, “
Run-time Ink Stability in Pneumatic Aerosol Jet Printing Using a Split Stream Solvent Add Back System
,”
M.S. thesis, Advisor: Denis Cormier
,
Department of Industrial and Systems Engineering, Rochester Institute of Technology
.
20.
Mahajan
,
A.
,
Frisbie
,
C. D.
, and
Francis
,
L. F.
,
2013
, “
Optimization of Aerosol Jet Printing for High-Resolution, High-Aspect Ratio Silver Lines
,”
ACS Appl. Mater. Interfaces
,
5
(
11
), pp.
4856
4864
. 10.1021/am400606y
21.
Feng
,
J. Q.
,
2016
, “A Computational Study of High-Speed Microdroplet Impact Onto a Smooth Solid Surface,” Cornell University Library, Physics-Fluid Dynamics, Xiv:1602.07672.
22.
Kothuru
,
A.
,
Nooka
,
S. P.
, and
Liu
,
R.
,
2018
, “
Audio-based Tool Condition Monitoring in Milling of the Workpiece Material with the Hardness Variation Using Support Vector Machines and Convolutional Neural Networks
,”
ASME J. Manuf. Sci. Eng.
,
140
(
11
), p.
111006
. 10.1115/1.4040874
23.
Wu
,
D.
,
Jennings
,
C.
,
Terpenny
,
J.
,
Kumara
,
S.
, and
Gao
,
R. X.
,
2018
, “
Cloud-based Parallel Machine Learning for Tool Wear Prediction
,”
ASME J. Manuf. Sci. Eng.
,
140
(
4
), p.
041005
. 10.1115/1.4038002
24.
Khanzadeh
,
M.
,
Rao
,
P.
,
Jafari-Marandi
,
R.
,
Smith
,
B. K.
,
Tschopp
,
M. A.
, and
Bian
,
L.
,
2018
, “
Quantifying Geometric Accuracy with Unsupervised Machine Learning: Using Self-Organizing Map on Fused Filament Fabrication Additive Manufacturing Parts
,”
ASME J. Manuf. Sci. Eng.
,
140
(
3
), p.
031011
. 10.1115/1.4038598
25.
Li
,
Z.
,
Wu
,
D.
, and
Yu
,
T.
,
2019
, “
Prediction of Material Removal Rate for Chemical Mechanical Planarization Using Decision Tree-Based Ensemble Learning
,”
ASME J. Manuf. Sci. Eng.
,
141
(
3
), p.
031003
. 10.1115/1.4042051
26.
Du
,
J.
,
Yue
,
X.
,
Hunt
,
J. H.
, and
Shi
,
J.
,
2019
, “
Optimal Placement of Actuators Via Sparse Learning for Composite Fuselage Shape Control
,”
ASME J. Manuf. Sci. Eng.
,
141
(
10
), p.
101004
. 10.1115/1.4044249
27.
He
,
A.
, and
Jin
,
X.
,
2019
, “
Failure Detection and Remaining Life Estimation for Ion Mill Etching Process Through Deep-Learning Based Multimodal Data Fusion
,”
ASME J. Manuf. Sci. Eng.
,
141
(
10
), p.
101008
. 10.1115/1.4044248
28.
Imani
,
F.
,
Chen
,
R.
,
Diewald
,
E.
,
Reutzel
,
E.
, and
Yang
,
H.
,
2019
, “
Deep Learning of Variant Geometry in Layerwise Imaging Profiles for Additive Manufacturing Quality Control
,”
ASME J. Manuf. Sci. Eng.
,
141
(
11
), p
111001
. 10.1115/1.4044420
29.
Han
,
C.
,
Luo
,
M.
,
Zhang
,
D.
, and
Wu
,
B.
,
2018
, “
Iterative Learning Method for Drilling Depth Optimization in Peck Deep-Hole Drilling
,”
ASME J. Manuf. Sci. Eng.
,
140
(
12
), p.
121009
. 10.1115/1.4041420
30.
Candès
,
E. J.
, and
Wakin
,
M. B.
,
2008
, “
An Introduction to Compressive Sampling
,”
IEEE Signal Process. Mag.
,
25
(
2
), pp.
21
30
. 10.1109/MSP.2007.914731
31.
Wright
,
J.
,
Yang
,
A. Y.
,
Ganesh
,
A.
,
Sastry
,
S. S.
, and
Ma
,
Y.
,
2009
, “
Robust Face Recognition via Sparse Representation
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
31
(
2
), pp.
210
227
. 10.1109/TPAMI.2008.79
32.
Barazandeh
,
B.
,
Bastani
,
K.
,
Rafieisakhaei
,
M.
,
Kim
,
S.
,
Kong
,
Z.
, and
Nussbaum
,
M. A.
,
2017
, “
Robust Sparse Representation-Based Classification Using Online Sensor Data for Monitoring Manual Material Handling Tasks
,”
IEEE Trans. Autom. Sci. Eng.
,
15
(
4
), pp.
1573
1584
. 10.1109/TASE.2017.2729583
33.
Bastani
,
K.
,
Rao
,
P. K.
, and
Kong
,
Z.
,
2016
, “
An Online Sparse Estimation-Based Classification Approach for Real-Time Monitoring in Advanced Manufacturing Processes From Heterogeneous Sensor Data
,”
IIE Trans.
,
48
(
7
), pp.
579
598
. 10.1080/0740817X.2015.1122254
34.
Xu
,
W.
,
Shen
,
Y.
,
Bergmann
,
N.
, and
Hu
,
W.
,
2016
, “
Sensor-Assisted Face Recognition System on Smart Glass via Multi-View Sparse Representation Classification
,”
Proceedings of the IEEE 15th International Conference on Information Processing in Sensor Networks
,
Vienna, Austria
,
Apr. 11–14
,
IEEE Press
, p.
2
.
35.
Xu
,
W.
,
Lan
,
G.
,
Lin
,
Q.
,
Khalifa
,
S.
,
Bergmann
,
N.
,
Hassan
,
M.
, and
Hu
,
W.
,
2017
, “
Keh-Gait: Towards a Mobile Healthcare User Authentication System by Kinetic Energy Harvesting
,”
Proceedings of 24th Annual NDSS Symposium
,
San Diego, CA
,
Feb. 26–Mar. 1
, pp.
1
15
.
36.
Yang
,
Y.
, and
Nagarajaiah
,
S.
,
2014
, “
Structural Damage Identification via a Combination of Blind Feature Extraction and Sparse Representation Classification
,”
Mech. Syst. Sig. Process.
,
45
(
1
), pp.
1
23
. 10.1016/j.ymssp.2013.09.009
37.
Tootooni
,
M. S.
,
Fan
,
M.
,
Sivasubramony
,
R. S.
,
Rao
,
P.
,
Chou
,
C.-A.
, and
Miskovic
,
V.
,
2016
, “
Graph Theoretic Compressive Sensing Approach for Classification of Global Neurophysiological States From Electroencephalography (EEG) Signals
,”
Proceedings of 2016 International Conference on Brain Informatics & Health
,
Omaha, NE
,
Oct. 13–16
, pp.
42
51
.
38.
Tootooni
,
M. S.
,
Dsouza
,
A.
,
Donovan
,
R.
,
Rao
,
P. K.
,
Kong
,
Z. J.
, and
Borgesen
,
P.
,
2017
, “
Classifying the Dimensional Variation in Additive Manufactured Parts From Laser-Scanned 3D Point Cloud Data Using Machine Learning Approaches
,”
ASME J. Manuf. Sci. Eng.
,
139
(
9
), p.
091005
. 10.1115/1.4036641
39.
Pereda
,
E.
,
Quiroga
,
R. Q.
, and
Bhattacharya
,
J.
,
2005
, “
Nonlinear Multivariate Analysis of Neurophysiological Signals
,”
Prog. Neurobiol.
,
77
(
1
), pp.
1
37
. 10.1016/j.pneurobio.2005.10.003
40.
Siegel
,
M.
,
Donner
,
T. H.
, and
Engel
,
A. K.
,
2012
, “
Spectral Fingerprints of Large-Scale Neuronal Interactions
,”
Nat. Rev. Neurosci.
,
13
(
2
), pp.
121
134
. 10.1038/nrn3137
41.
Tu
,
J. V.
,
1996
, “
Advantages and Disadvantages of Using Artificial Neural Networks Versus Logistic Regression for Predicting Medical Outcomes
,”
J. Clin. Epidemiol.
,
49
(
11
), pp.
1225
1231
. 10.1016/S0895-4356(96)00002-9
42.
Wang
,
Z.
, and
Srinivasan
,
R. S.
,
2017
, “
A Review of Artificial Intelligence Based Building Energy Use Prediction: Contrasting the Capabilities of Single and Ensemble Prediction Models
,”
Renewable Sustainable Energy Rev.
,
75
(
9
), pp.
796
808
. 10.1016/j.rser.2016.10.079
43.
Kiang
,
M. Y.
,
2003
, “
A Comparative Assessment of Classification Methods
,”
Decis. Support Syst.
,
35
(
4
), pp.
441
454
. 10.1016/S0167-9236(02)00110-0
44.
Swain
,
P. H.
, and
Hauska
,
H.
,
1977
, “
The Decision Tree Classifier: Design and Potential
,”
IEEE Trans. Geosci. Electr.
,
15
(
3
), pp.
142
147
. 10.1109/TGE.1977.6498972
45.
Podgorelec
,
V.
,
Kokol
,
P.
,
Stiglic
,
B.
, and
Rozman
,
I.
,
2002
, “
Decision Trees: An Overview and Their Use in Medicine
,”
J. Med. Syst.
,
26
(
5
), pp.
445
463
. 10.1023/A:1016409317640
46.
Jadhav
,
S. D.
, and
Channe
,
H.
,
2016
, “
Comparative Study of kNN, Naive Bayes and Decision Tree Classification Techniques
,”
Int. J. Sci. Res. (IJSR)
,
5
(
1
), pp.
1842
1845
. 10.21275/v5i1.NOV153131
47.
Westreich
,
D.
,
Lessler
,
J.
, and
Funk
,
M. J.
,
2010
, “
Propensity Score Estimation: Neural Networks, Support Vector Machines, Decision Trees (CART), and Meta-Classifiers as Alternatives to Logistic Regression
,”
J. Clin. Epidemiol.
,
63
(
8
), pp.
826
833
. 10.1016/j.jclinepi.2009.11.020
48.
Gonzalez
,
R. C.
, and
Woods
,
R. E.
,
2008
,
Digital Image Processing
,
Prentice Hall
,
Upper Saddle River, NJ
.
49.
Ben-Haim
,
Z.
, and
Eldar
,
Y. C.
,
2011
, “
Near-Oracle Performance of Greedy Block-Sparse Estimation Techniques From Noisy Measurements
,”
IEEE J. Sel. Top. Sig. Process.
,
5
(
5
), pp.
1032
1047
. 10.1109/JSTSP.2011.2160250
50.
Rigollet
,
P.
, and
Tsybakov
,
A. B.
,
2012
, “
Sparse Estimation by Exponential Weighting
,”
Statist. Sci.
,
27
(
4
), pp.
558
575
. 10.1214/12-STS393
51.
Rojas
,
C. R.
, and
Hjalmarsson
,
H.
,
2011
, “
Sparse Estimation Based on a Validation Criterion
,”
Proceedings of 50th IEEE Decision and Control and European Control Conference (CDC-ECC)
,
Orlando, FL
,
Dec. 12–15
, pp.
2825
2830
.
52.
Candes
,
E.
, and
Tao
,
T.
,
2007
, “
The Dantzig Selector: Statistical Estimation When p is Much Larger Than n
,”
Ann. Stat.
,
35
(
6
), pp.
2313
2351
. 10.1214/009053606000001523
53.
Chen
,
S. S.
,
Donoho
,
D. L.
, and
Saunders
,
M. A.
,
2001
, “
Atomic Decomposition by Basis Pursuit
,”
SIAM Rev.
,
43
(
1
), pp.
129
159
. 10.1137/S003614450037906X
54.
Li
,
C.
,
Yin
,
W.
,
Jiang
,
H.
, and
Zhang
,
Y.
,
2013
, “
An Efficient Augmented Lagrangian Method With Applications to Total Variation Minimization
,”
Comput. Optim. Appl.
,
56
(
3
), pp.
507
530
. 10.1007/s10589-013-9576-1
55.
Tibshirani
,
R.
,
1996
, “
Regression Shrinkage and Selection via the LASSO
,”
J. R. Statist. Soc. B
,
58
(
1
), pp.
267
288
. 10.1111/j.2517-6161.1996.tb02080.x
56.
Donoho
,
D. L.
,
Tsaig
,
Y.
,
Drori
,
I.
, and
Starck
,
J.-L.
,
2012
, “
Sparse Solution of Underdetermined Systems of Linear Equations by Stagewise Orthogonal Matching Pursuit
,”
IEEE Trans. Inf. Theory
,
58
(
2
), pp.
1094
1121
. 10.1109/TIT.2011.2173241
57.
Efron
,
B.
,
Hastie
,
T.
,
Johnstone
,
I.
, and
Tibshirani
,
R.
,
2004
, “
Least Angle Regression
,”
Ann. Stat.
,
32
(
2
), pp.
407
499
. 10.1214/009053604000000067
58.
Pati
,
Y. C.
,
Rezaiifar
,
R.
, and
Krishnaprasad
,
P. S.
,
1993
, “
Orthogonal Matching Pursuit: Recursive Function Approximation with Applications to Wavelet Decomposition
,”
Proceedings of 27th Asilomar Conference on Signals, Systems and Computers
,
Pacific Grove, CA
,
Nov. 1–3
, pp.
40
44
http://dx.doi.org/10.1109/ACSSC.1993.342288.
59.
Tipping
,
M. E.
,
2001
, “
Sparse Bayesian Learning and the Relevance Vector Machine
,”
J. Mach. Learn. Res.
,
1
, pp.
211
244
.
60.
Tipping
,
M. E.
, and
Faul
,
A. C.
,
2003
, “
Fast Marginal Likelihood Maximisation for Sparse Bayesian Models
,”
Proceedings of the 9th International Workshop on Artificial Intelligence and Statistics
,
Key West, FL
,
Jan. 3–6
, pp.
3
6
.
61.
Wipf
,
D. P.
, and
Rao
,
B. D.
,
2004
, “
Sparse Bayesian Learning for Basis Selection
,”
IEEE Trans. Signal Process.
,
52
(
8
), pp.
2153
2164
. 10.1109/TSP.2004.831016
62.
Fu
,
W. J.
,
1998
, “
Penalized Regressions: The Bridge Versus the LASSO
,”
J. Comput. Graph. Stat.
,
7
(
3
), pp.
397
416
. 10.1080/10618600.1998.10474784
63.
Wu
,
T. T.
, and
Lange
,
K.
,
2008
, “
Coordinate Descent Algorithms for LASSO Penalized Regression
,”
Ann. Appl. Stat.
,
2
(
1
), pp.
224
244
. 10.1214/07-AOAS147
64.
Boyd
,
S.
,
Parikh
,
N.
,
Chu
,
E.
,
Peleato
,
B.
, and
Eckstein
,
J.
,
2011
, “
Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers
,”
Found. Trends® Mach. Learn.
,
3
(
1
), pp.
1
122
. 10.1561/2200000016
65.
Dai
,
W.
, and
Milenkovic
,
O.
,
2009
, “
Subspace Pursuit for Compressive Sensing Signal Reconstruction
,”
IEEE Trans. Inf. Theory
,
55
(
5
), pp.
2230
2249
. 10.1109/TIT.2009.2016006
66.
Needell
,
D.
, and
Tropp
,
J. A.
,
2010
, “
CoSaMP: Iterative Signal Recovery From Incomplete and Inaccurate Samples
,”
Appl. Comput. Harmon. Anal.
,
26
(
3
), pp.
301
321
. 10.1016/j.acha.2008.07.002
67.
Bastani
,
K.
,
Barazandeh
,
B.
, and
Kong
,
Z. J.
,
2018
, “
Fault Diagnosis in Multistation Assembly Systems Using Spatially Correlated Bayesian Learning Algorithm
,”
ASME J. Manuf. Sci. Eng.
,
140
(
3
), p.
031003
. 10.1115/1.4038184
68.
Zou
,
H.
, and
Hastie
,
T.
,
2005
, “
Regularization and Variable Selection via the Elastic Net
,”
J. R. Statist. Soc. B
,
67
(
2
), pp.
301
320
. 10.1111/j.1467-9868.2005.00503.x
69.
Marquaridt
,
D. W.
,
1970
, “
Generalized Inverses, Ridge Regression, Biased Linear Estimation, and Nonlinear Estimation
,”
Technometrics
,
12
(
3
), pp.
591
612
. 10.1080/00401706.1970.10488699
70.
Ping-Sing
,
T.
, and
Shah
,
M.
,
1994
, “
Shape From Shading Using Linear Approximation
,”
Image Vision Comput.
,
12
(
8
), pp.
487
498
. 10.1016/0262-8856(94)90002-7
71.
Fawcett
,
T.
,
2006
, “
An Introduction to ROC Analysis
,”
Pattern Recognit. Lett.
,
27
(
8
), pp.
861
874
. 10.1016/j.patrec.2005.10.010
72.
Powers
,
D. M.
,
2011
, “
Evaluation: From Precision, Recall and F-Measure to ROC, Informedness, Markedness and Correlation
,”
J. Mach. Learn. Technol.
,
2
(
1
), pp.
37
63
. 10.9735/2229-3981
73.
Hagan
,
M. T.
,
Demuth
,
H. B.
,
Beale
,
M. H.
, and
De Jesús
,
O.
,
2014
,
Neural Network Design
, 2nd ed.,
PWS Publishing Co.
,
Boston, MA
.
74.
Breiman
,
L.
,
Friedman
,
J.
,
Stone
,
C. J.
, and
Olshen
,
R. A.
,
1984
,
Classification and Regression Trees
,
CRC Press
,
Boca Raton, FL
.
75.
Fisher
,
R. A.
,
1936
, “
The Use of Multiple Measurements in Taxonomic Problems
,”
Ann. Human Genet.
,
7
(
2
), pp.
179
188
. 10.1111/j.1469-1809.1936.tb02137.x
76.
Hastie
,
T.
,
Tibshirani
,
R.
, and
Friedman
,
J.
,
2008
,
The Elements of Statistical Learning
,
Springer-Verlag
,
New York, NY
.
77.
Manning
,
C. D.
,
Raghavan
,
P.
, and
Schütze
,
M.
,
2008
,
Introduction to Information Retrieval
,
Cambridge University Press
,
New York, NY
.
78.
Mitchell
,
T. M.
,
1997
,
Machine Learning
,
MIT Press and McGraw-Hill
,
Burr Ridge, IL
.
79.
Allwein
,
E. L.
,
Schapire
,
R. E.
, and
Singer
,
Y.
,
2000
, “
Reducing Multiclass to Binary: A Unifying Approach for Margin Classifiers
,”
J. Mach. Learn. Res.
,
1
, pp.
113
141
. 10.1162/15324430152733133
80.
Escalera
,
S.
,
Pujol
,
O.
, and
Radeva
,
P.
,
2009
, “
Separability of Ternary Codes for Sparse Designs of Error-Correcting Output Codes
,”
Pattern Recognit. Lett.
,
30
(
3
), pp.
285
297
. 10.1016/j.patrec.2008.10.002
81.
Escalera
,
S.
,
Pujol
,
O.
, and
Radeva
,
P.
,
2010
, “
On the Decoding Process in Ternary Error-Correcting Output Codes
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
32
(
1
), pp.
120
134
. 10.1109/TPAMI.2008.266
82.
Fürnkranz
,
J.
,
2002
, “
Round Robin Classification
,”
J. Mach. Learn. Res.
,
2
(
Mar
), pp.
721
747
. 10.1162/153244302320884605
83.
Li
,
Y.
,
Mohan
,
K.
,
Sun
,
H.
, and
Jin
,
R.
,
2017
, “
Ensemble Modeling of In Situ Features for Printed Electronics Manufacturing With In Situ Process Control Potential
,”
IEEE Robot. Autom. Lett.
,
2
(
4
), pp.
1864
1870
. 10.1109/LRA.2017.2713242
84.
Zhou
,
Z.-H.
,
2012
,
Ensemble Methods: Foundations and Algorithms
,
Chapman & Hall/CRC Press
,
Boca Raton, FL
.
85.
Lombardi
,
J. P.
,
Salary
,
R. R.
,
Weerawarne
,
D. L.
,
Rao
,
P. K.
, and
Poliks
,
M. D.
,
2019
, “
Image-Based Closed-Loop Control of Aerosol Jet Printing Using Classical Control Methods
,”
ASME J. Manuf. Sci. Eng.
,
141
(
7
), p.
071011
. 10.1115/1.4043659
86.
Salary
,
R.
,
Lombardi
,
J. P.
,
Weerawarne
,
D. L.
,
Rao
,
P. K.
, and
Poliks
,
M. D.
,
2018
, “
A Computational Fluid Dynamics (CFD) Study of Material Transport and Deposition in Aerosol Jet Printing (AJP) Process
,”
ASME 2018 International Mechanical Engineering Congress & Exposition (IMECE 2018)
,
Pittsburgh, PA
,
Nov. 9–15
,
Proc. Paper No. 87647
.
You do not currently have access to this content.