Abstract

Tubular structures of the hydrogel are used in a variety of applications such as delivering nutrient supplies for 3D cell culturing. The wall thickness of the tube determines the delivery rate. In this study, we used the coaxial extrusion process to fabricate tubular structures with varying wall thicknesses using a thermal-crosslinking hydrogel, gellan gum (GG). The objectives of this study are to investigate the thermal extrusion process of GG to form tubular structures, the range of achievable wall thickness, and a possibility to form tubular structures with closed ends to encapsulate fluid or drug inside the tube. The wall thickness is controlled by changing the relative flow velocity of the inner needle (phosphate-buffered saline, PBS) to the outer needle, while keeping the velocity of outer needles (GG) constant. Two pairs of coaxial needles were used which are 18-12 gauge (G) and 20-12G. The controllable wall thickness ranges from 0.618 mm (100% relative velocity) to 0.499 mm (250%) for 18-12G and from 0.77 mm (80%) to 0.69 (200%) for 20-12G. Encapsulation is possible in a smaller range of flow velocities in both needle combinations. A finite element model was developed to estimate the temperature distribution and the wall thickness. The model is found to be accurate. The dynamic viscosity of GG determines the pressure equilibrium and the range of achievable wall thickness. Changing the inner needle size or the flow velocity both affect the heat exchange and thus the temperature-dependent dynamic viscosity.

References

References
1.
Markstedt
,
K.
,
Mantas
,
A.
,
Tournier
,
I.
,
Martínez Ávila
,
H.
,
Hägg
,
D.
, and
Gatenholm
,
P.
,
2015
, “
3D Bioprinting Human Chondrocytes With Nanocellulose–Alginate Bioink for Cartilage Tissue Engineering Applications
,”
Biomacromolecules
,
16
(
5
), pp.
1489
1496
. 10.1021/acs.biomac.5b00188
2.
Hamedi
,
H.
,
Moradi
,
S.
,
Hudson
,
S. M.
, and
Tonelli
,
A. E.
,
2018
, “
Chitosan Based Hydrogels and Their Applications for Drug Delivery in Wound Dressings: A Review
,”
Carbohydr. Polym.
,
199
, pp.
445
460
. 10.1016/j.carbpol.2018.06.114
3.
Lee
,
K. Y.
, and
Mooney
,
D. J.
,
2001
, “
Hydrogels for Tissue Engineering
,”
Chem. Rev.
,
101
(
7
), pp.
1869
1880
. 10.1021/cr000108x
4.
Xu
,
C.
,
Christensen
,
K.
,
Zhang
,
Z.
,
Huang
,
Y.
,
Fu
,
J.
, and
Markwald
,
R. R.
,
2013
, “
Predictive Compensation-Enabled Horizontal Inkjet Printing of Alginate Tubular Constructs
,”
Manuf. Lett.
,
1
(
1
), pp.
28
32
. 10.1016/j.mfglet.2013.09.003
5.
Hsiao
,
W.-K.
,
Lorber
,
B.
,
Reitsamer
,
H.
, and
Khinast
,
J.
,
2017
, “
3D Printing of Oral Drugs: A New Reality or Hype?
Expert Opin. Drug Delivery
,
15
, pp.
1
4
. 10.1080/17425247.2017.1371698
6.
Zhang
,
Y.
,
Yu
,
Y.
, and
Ozbolat
,
I. T.
,
2013
, “
Direct Bioprinting of Vessel-Like Tubular Microfluidic Channels
,”
J. Nanotechnol. Eng. Med.
,
4
(
2
), p.
020902
, 10.1115/1.4024398
7.
Hoch
,
E.
,
Tovar
,
G. E. M.
, and
Borchers
,
K.
,
2014
, “
Bioprinting of Artificial Blood Vessels: Current Approaches Towards a Demanding Goal
,”
Eur. J. Cardiothorac. Surg.
,
46
(
5
), pp.
767
778
. 10.1093/ejcts/ezu242
8.
Colosi
,
C.
,
Shin
,
S. R.
,
Manoharan
,
V.
,
Massa
,
S.
,
Costantini
,
M.
,
Barbetta
,
A.
,
Dokmeci
,
M. R.
,
Dentini
,
M.
, and
Khademhosseini
,
A.
,
2016
, “
Microfluidic Bioprinting of Heterogeneous 3D Tissue Constructs Using Low-Viscosity Bioink
,”
Adv. Mater.
,
28
(
4
), pp.
677
684
. 10.1002/adma.201503310
9.
Yu
,
I.
,
Kaonis
,
S.
, and
Chen
,
R.
,
2017
, “
A Study on Degradation Behavior of 3D Printed Gellan Gum Scaffolds
,”
Proc. CIRP
,
65
, pp.
78
83
. 10.1016/j.procir.2017.04.020
10.
Shi
,
W.
,
He
,
R.
, and
Liu
,
Y.
,
2015
, “
3D Printing Scaffolds With Hydrogel Materials for Biomedical Applications
,”
Eur. J. BioMed. Res.
,
1
(
3
), p.
3
. 10.18088/ejbmr.1.3.2015.pp3-8
11.
Ashton
,
R. S.
,
Banerjee
,
A.
,
Punyani
,
S.
,
Schaffer
,
D. V.
, and
Kane
,
R. S.
,
2007
, “
Scaffolds Based on Degradable Alginate Hydrogels and Poly(Lactide-co-Glycolide) Microspheres for Stem Cell Culture
,”
Biomaterials
,
28
(
36
), pp.
5518
5525
. 10.1016/j.biomaterials.2007.08.038
12.
Hutmacher
,
D. W.
,
Sittinger
,
M.
, and
Risbud
,
M. V.
,
2004
, “
Scaffold-Based Tissue Engineering: Rationale for Computer-Aided Design and Solid Free-Form Fabrication Systems
,”
Trends Biotechnol.
,
22
(
7
), pp.
354
362
. 10.1016/j.tibtech.2004.05.005
13.
Barry
,
R. A.
,
Shepherd
,
R. F.
,
Hanson
,
J. N.
,
Nuzzo
,
R. G.
,
Wiltzius
,
P.
, and
Lewis
,
J. A.
,
2009
, “
Direct-Write Assembly of 3D Hydrogel Scaffolds for Guided Cell Growth
,”
Adv. Mater.
,
21
(
23
), pp.
2407
2410
. 10.1002/adma.200803702
14.
Billiet
,
T.
,
Vandenhaute
,
M.
,
Schelfhout
,
J.
,
Van Vlierberghe
,
S.
, and
Dubruel
,
P.
,
2012
, “
A Review of Trends and Limitations in Hydrogel-Rapid Prototyping for Tissue Engineering
,”
Biomaterials
,
33
(
26
), pp.
6020
6041
. 10.1016/j.biomaterials.2012.04.050
15.
Li
,
S.
,
Wang
,
K.
,
Hu
,
Q.
,
Zhang
,
C.
, and
Wang
,
B.
,
2019
, “
Direct-Write and Sacrifice-Based Techniques for Vasculatures
,”
Mater. Sci. Eng.: C
,
104
, p.
109936
. 10.1016/j.msec.2019.109936
16.
Gao
,
Q.
,
He
,
Y.
,
Fu
,
J.
,
Liu
,
A.
, and
Ma
,
L.
,
2015
, “
Coaxial Nozzle-Assisted 3D Bioprinting With Built-In Microchannels for Nutrients Delivery
,”
Biomaterials
,
61
, pp.
203
215
. 10.1016/j.biomaterials.2015.05.031
17.
Jakab
,
K.
,
Norotte
,
C.
,
Damon
,
B.
,
Marga
,
F.
,
Neagu
,
A.
,
Besch-Williford
,
C. L.
,
Kachurin
,
A.
,
Church
,
K. H.
,
Park
,
H.
,
Mironov
,
V.
,
Markwald
,
R.
,
Vunjak-Novakovic
,
G.
, and
Forgacs
,
G.
,
2008
, “
Tissue Engineering by Self-Assembly of Cells Printed Into Topologically Defined Structures
,”
Tissue Eng., Part A
,
14
(
3
), pp.
413
421
. 10.1089/tea.2007.0173
18.
Norotte
,
C.
,
Marga
,
F. S.
,
Niklason
,
L. E.
, and
Forgacs
,
G.
,
2009
, “
Scaffold-Free Vascular Tissue Engineering Using Bioprinting
,”
Biomaterials
,
30
(
30
), pp.
5910
5917
. 10.1016/j.biomaterials.2009.06.034
19.
Goole
,
J.
, and
Amighi
,
K.
,
2016
, “
3D Printing in Pharmaceutics: A New Tool for Designing Customized Drug Delivery Systems
,”
Int. J. Pharm.
,
499
(
1–2
), pp.
376
394
. 10.1016/j.ijpharm.2015.12.071
20.
Norman
,
J.
,
Madurawe
,
R. D.
,
Moore
,
C. M. V.
,
Khan
,
M. A.
, and
Khairuzzaman
,
A.
,
2017
, “
A New Chapter in Pharmaceutical Manufacturing: 3D-Printed Drug Products
,”
Adv. Drug Delivery Rev.
,
108
, pp.
39
50
. 10.1016/j.addr.2016.03.001
21.
Moulton
,
S. E.
, and
Wallace
,
G. G.
,
2014
, “
3-Dimensional (3D) Fabricated Polymer Based Drug Delivery Systems
,”
J. Controlled Release
,
193
(
10
), pp.
27
34
. 10.1016/j.jconrel.2014.07.005
22.
Colombo
,
P.
,
Bettini
,
R.
,
Santi
,
P.
, and
Peppas
,
N. A.
,
2000
, “
Swellable Matrices for Controlled Drug Delivery: Gel-Layer Behaviour, Mechanisms and Optimal Performance
,”
Pharm. Sci. Technol. Today
,
3
(
6
), pp.
198
204
. 10.1016/S1461-5347(00)00269-8
23.
Colombo
,
P.
,
1993
, “
Swelling-Controlled Release in Hydrogel Matrices for Oral Route
,”
Adv. Drug Delivery Rev.
,
11
(
1
), pp.
37
57
. 10.1016/0169-409X(93)90026-Z
24.
Narasimhan
,
B.
, and
Peppas
,
N. A.
,
1997
, “
Molecular Analysis of Drug Delivery Systems Controlled by Dissolution of the Polymer Carrier
,”
J. Pharm. Sci.
,
86
(
3
), pp.
297
304
. 10.1021/js960372z
25.
Li
,
Y.
,
Liu
,
Y.
,
Jiang
,
C.
,
Li
,
S.
,
Liang
,
G.
, and
Hu
,
Q.
,
2016
, “
A Reactor-Like Spinneret Used in 3D Printing Alginate Hollow Fiber: A Numerical Study of Morphological Evolution
,”
Soft Matter
,
12
(
8
), pp.
2392
2399
. 10.1039/C5SM02733K
26.
Kolesky
,
D. B.
,
Truby
,
R. L.
,
Gladman
,
A. S.
,
Busbee
,
T. A.
,
Homan
,
K. A.
, and
Lewis
,
J. A.
,
2014
, “
3D Bioprinting of Vascularized, Heterogeneous Cell-Laden Tissue Constructs
,”
Adv. Mater.
,
26
(
19
), pp.
3124
3130
. 10.1002/adma.201305506
27.
Lee
,
K. Y.
, and
Mooney
,
D. J.
,
2012
, “
Alginate: Properties and Biomedical Applications
,”
Prog. Polym. Sci.
,
37
(
1
), pp.
106
126
. 10.1016/j.progpolymsci.2011.06.003
28.
Boontheekul
,
T.
,
Kong
,
H.-J.
, and
Mooney
,
D. J.
,
2005
, “
Controlling Alginate Gel Degradation Utilizing Partial Oxidation and Bimodal Molecular Weight Distribution
,”
Biomaterials
,
26
(
15
), pp.
2455
2465
. 10.1016/j.biomaterials.2004.06.044
29.
Kuo
,
C. K.
, and
Ma
,
P. X.
,
2001
, “
Ionically Crosslinked Alginate Hydrogels as Scaffolds for Tissue Engineering: Part 1. Structure, Gelation Rate and Mechanical Properties
,”
Biomaterials
,
22
(
6
), pp.
511
521
. 10.1016/S0142-9612(00)00201-5
30.
Li
,
S.
,
Liu
,
Y.
,
Li
,
Y.
,
Zhang
,
Y.
, and
Hu
,
Q.
,
2015
, “
Computational and Experimental Investigations of the Mechanisms Used by Coaxial Fluids to Fabricate Hollow Hydrogel Fibers
,”
Chem. Eng. Process.: Process Intensif.
,
95
, pp.
98
104
. 10.1016/j.cep.2015.05.018
31.
Ferris
,
C. J.
, and in het
Panhuis
,
M.
,
2009
, “
Conducting Bio-Materials Based on Gellan Gum Hydrogels
,”
Soft Matter
,
5
(
18
), p.
3430
. 10.1039/b909795c
32.
Smith
,
A. M.
,
Shelton
,
R. M.
,
Perrie
,
Y.
, and
Harris
,
J. J.
,
2007
, “
An Initial Evaluation of Gellan Gum as a Material for Tissue Engineering Applications
,”
J. Biomater. Appl.
,
22
(
3
), pp.
241
254
. 10.1177/0885328207076522
33.
Oliveira
,
J. T.
,
Martins
,
L.
,
Picciochi
,
R.
,
Malafaya
,
P. B.
,
Sousa
,
R. A.
,
Neves
,
N. M.
,
Mano
,
J. F.
, and
Reis
,
R. L.
,
2009
, “
Gellan Gum: A New Biomaterial for Cartilage Tissue Engineering Applications
,”
J. Biomed. Mater. Res. Part A
,
93A
(
3
), pp.
852
863
. 10.1002/jbm.a.32574
34.
Carmona-Moran
,
C. A.
,
Zavgorodnya
,
O.
,
Penman
,
A. D.
,
Kharlampieva
,
E.
,
Bridges
,
S. L.
,
Hergenrother
,
R. W.
,
Singh
,
J. A.
, and
Wick
,
T. M.
,
2016
, “
Development of Gellan Gum Containing Formulations for Transdermal Drug Delivery: Component Evaluation and Controlled Drug Release Using Temperature Responsive Nanogels
,”
Int. J. Pharm.
,
509
(
1–2
), pp.
465
476
. 10.1016/j.ijpharm.2016.05.062
35.
Osmałek
,
T.
,
Froelich
,
A.
, and
Tasarek
,
S.
,
2014
, “
Application of Gellan Gum in Pharmacy and Medicine
,”
Int. J. Pharm.
,
466
(
1–2
), pp.
328
340
. 10.1016/j.ijpharm.2014.03.038
36.
Chen
,
R. K.
, and
Shih
,
A. J.
,
2013
, “
Multi-Modality Gellan Gum-Based Tissue-Mimicking Phantom With Targeted Mechanical, Electrical, and Thermal Properties
,”
Phys. Med. Biol.
,
58
(
16
), pp.
5511
5525
. 10.1088/0031-9155/58/16/5511
37.
Naeimirad
,
M.
, and
Zadhoush
,
A.
,
2018
, “
Melt-Spun Liquid Core Fibers: A CFD Analysis on Biphasic Flow in Coaxial Spinneret Die
,”
Fibers Polym.
,
19
(
4
), pp.
905
913
. 10.1007/s12221-018-7902-z
38.
Hu
,
H. H.
, and
Patankar
,
N.
,
1995
, “
Non-Axisymmetric Instability of Core–Annular Flow
,”
J. Fluid Mech.
,
290
, pp.
213
224
. 10.1017/S0022112095002485
39.
Bannwart
,
A. C.
,
2001
, “
Modeling Aspects of Oil–Water Core–Annular Flows
,”
J. Pet. Sci. Eng.
,
32
(
2
), pp.
127
143
. 10.1016/S0920-4105(01)00155-3
40.
Peng
,
L.
,
Yang
,
M.
,
Guo
,
S.
,
Liu
,
W.
, and
Zhao
,
X.
,
2011
, “
The Effect of Interfacial Tension on Droplet Formation in Flow-Focusing Microfluidic Device
,”
Biomed. Microdevices
,
13
(
3
), pp.
559
564
. 10.1007/s10544-011-9526-6
You do not currently have access to this content.