Abstract

When using light-based three-dimensional (3D) printing methods to fabricate functional micro-devices, unwanted light scattering during the printing process is a significant challenge to achieve high-resolution fabrication. We report the use of a deep neural network (NN)-based machine learning (ML) technique to mitigate the scattering effect, where our NN was employed to study the highly sophisticated relationship between the input digital masks and their corresponding output 3D printed structures. Furthermore, the NN was used to model an inverse 3D printing process, where it took desired printed structures as inputs and subsequently generated grayscale digital masks that optimized the light exposure dose according to the desired structures’ local features. Verification results showed that using NN-generated digital masks yielded significant improvements in printing fidelity when compared with using masks identical to the desired structures.

References

References
1.
Hwang
,
H. H.
,
Zhu
,
W.
,
Victorine
,
G.
,
Lawrence
,
N.
, and
Chen
,
S.
,
2018
, “
3D-Printing of Functional Biomedical Microdevices via Light-and Extrusion-Based Approaches
,”
Small Methods
,
2
(
2
), p.
1700277
. 10.1002/smtd.201700277
2.
Zhu
,
W.
,
Ma
,
X.
,
Gou
,
M.
,
Mei
,
D.
,
Zhang
,
K.
, and
Chen
,
S.
,
2016
, “
3D Printing of Functional Biomaterials for Tissue Engineering
,”
Curr. Opin. Biotechnol.
,
40
, pp.
103
112
. 10.1016/j.copbio.2016.03.014
3.
Sun
,
C.
,
Fang
,
N.
,
Wu
,
D. M.
, and
Zhang
,
X.
,
2005
, “
Projection Micro-Stereolithography Using Digital Micro-Mirror Dynamic Mask
,”
Sens. Actuators A: Phys.
,
121
(
1
), pp.
113
120
. 10.1016/j.sna.2004.12.011
4.
Zhang
,
A. P.
,
Qu
,
X.
,
Soman
,
P.
,
Hribar
,
K. C.
,
Lee
,
J. W.
,
Chen
,
S.
, and
He
,
S.
,
2012
, “
Rapid Fabrication of Complex 3D Extracellular Microenvironments by Dynamic Optical Projection Stereolithography
,”
Adv. Mater.
,
24
(
31
), pp.
4266
4270
. 10.1002/adma.201202024
5.
Tumbleston
,
J. R.
,
Shirvanyants
,
D.
,
Ermoshkin
,
N.
,
Janusziewicz
,
R.
,
Johnson
,
A. R.
,
Kelly
,
D.
,
Chen
,
K.
,
Pinschmidt
,
R.
,
Rolland
,
J. P.
,
Ermoshkin
,
A.
,
Samulski
,
E. T.
, and
DeSimone
,
J. M.
,
2015
, “
Continuous Liquid Interface Production of 3D Objects
,”
Science
,
347
(
6228
), pp.
1349
1352
. 10.1126/science.aaa2397
6.
Zhu
,
W.
,
Qu
,
X.
,
Zhu
,
J.
,
Ma
,
X.
,
Patel
,
S.
,
Liu
,
J.
,
Wang
,
P.
,
Lai
,
C. S. E.
,
Gou
,
M.
,
Xu
,
Y.
,
Zhang
,
K.
, and
Chen
,
S.
,
2017
, “
Direct 3D Bioprinting of Prevascularized Tissue Constructs With Complex Microarchitecture
,”
Biomaterials
,
124
, pp.
106
115
. 10.1016/j.biomaterials.2017.01.042
7.
Ma
,
X.
,
Qu
,
X.
,
Zhu
,
W.
,
Li
,
Y.-S.
,
Yuan
,
S.
,
Zhang
,
H.
,
Liu
,
J.
,
Wang
,
P.
,
Lai
,
C. S. E.
, and
Zanella
,
F.
,
2016
, “
Deterministically Patterned Biomimetic Human iPSC-Derived Hepatic Model via Rapid 3D Bioprinting
,”
Proc. Natl Acad. Sci.
,
113
(
8
), pp.
2206
2211
. 10.1073/pnas.1524510113
8.
Koffler
,
J.
,
Zhu
,
W.
,
Qu
,
X.
,
Platoshyn
,
O.
,
Dulin
,
J. N.
,
Brock
,
J.
,
Graham
,
L.
,
Lu
,
P.
,
Sakamoto
,
J.
,
Marsala
,
M.
,
Chen
,
S.
, and
Tuszynski
,
M. H.
,
2019
, “
Biomimetic 3D-Printed Scaffolds for Spinal Cord Injury Repair
,”
Nat. Med.
,
25
(
2
), pp.
263
269
. 10.1038/s41591-018-0296-z
9.
Zhu
,
W.
,
Tringale
,
K. R.
,
Woller
,
S. A.
,
You
,
S.
,
Johnson
,
S.
,
Shen
,
H.
,
Schimelman
,
J.
,
Whitney
,
M.
,
Steinauer
,
J.
,
Xu
,
W.
,
Yaksh
,
T. L.
,
Nguyen
,
Q. T.
, and
Chen
,
S.
,
2018
, “
Rapid Continuous 3D Printing of Customizable Peripheral Nerve Guidance Conduits
,”
Mater. Today
,
21
(
9
), pp.
951
959
. 10.1016/j.mattod.2018.04.001
10.
Liu
,
J.
,
Hwang
,
H. H.
,
Wang
,
P.
,
Whang
,
G.
, and
Chen
,
S.
,
2016
, “
Direct 3D-Printing of Cell-Laden Constructs in Microfluidic Architectures
,”
Lab Chip
,
16
(
8
), pp.
1430
1438
. 10.1039/C6LC00144K
11.
Kim
,
K.
,
Zhu
,
W.
,
Qu
,
X.
,
Aaronson
,
C.
,
McCall
,
W. R.
,
Chen
,
S.
, and
Sirbuly
,
D. J.
,
2014
, “
3D Optical Printing of Piezoelectric Nanoparticle–Polymer Composite Materials
,”
ACS Nano.
,
8
(
10
), pp.
9799
9806
. 10.1021/nn503268f
12.
Zhu
,
W.
,
Li
,
J.
,
Leong
,
Y. J.
,
Rozen
,
I.
,
Qu
,
X.
,
Dong
,
R.
,
Wu
,
Z.
,
Gao
,
W.
,
Chung
,
P. H.
,
Wang
,
J.
, and
Chen
,
S.
,
2015
, “
3D-Printed Artificial Microfish
,”
Adv. Mater.
,
27
(
30
), pp.
4411
4417
. 10.1002/adma.201501372
13.
You
,
S.
,
Wang
,
P.
,
Schimelman
,
J.
,
Hwang
,
H. H.
, and
Chen
,
S.
,
2019
, “
High-Fidelity 3D Printing Using Flashing Photopolymerization
,”
Addit. Manuf.
,
30
, p.
100834
. 10.1016/j.addma.2019.100834
14.
Wuest
,
T.
,
Weimer
,
D.
,
Irgens
,
C.
, and
Thoben
,
K.-D.
,
2016
, “
Machine Learning in Manufacturing: Advantages, Challenges, and Applications
,”
Prod. Manuf. Res.
,
4
(
1
), pp.
23
45
. 10.1080/21693277.2016.1192517
15.
Wang
,
T.
,
Kwok
,
T.-H.
,
Zhou
,
C.
, and
Vader
,
S.
,
2018
, “
In-Situ Droplet Inspection and Closed-Loop Control System Using Machine Learning for Liquid Metal jet Printing
,”
J. Manuf. Syst.
,
47
, pp.
83
92
. 10.1016/j.jmsy.2018.04.003
16.
Gardner
,
J. M.
,
Hunt
,
K. A.
,
Ebel
,
A. B.
,
Rose
,
E. S.
,
Zylich
,
S. C.
,
Jensen
,
B. D.
,
Wise
,
K. E.
,
Siochi
,
E. J.
, and
Sauti
,
G.
,
2019
, “
Machines as Craftsmen: Localized Parameter Setting Optimization for Fused Filament Fabrication 3D Printing
,”
Adv. Mater. Technol.
,
4
(
3
), p.
1800653
. 10.1002/admt.201800653
17.
Khanzadeh
,
M.
,
Rao
,
P.
,
Jafari-Marandi
,
R.
,
Smith
,
B. K.
,
Tschopp
,
M. A.
, and
Bian
,
L.
,
2017
, “
Quantifying Geometric Accuracy With Unsupervised Machine Learning: Using Self-Organizing Map on Fused Filament Fabrication Additive Manufacturing Parts
,”
J. Manuf. Sci. Eng.
,
140
(
3
), p.
031011
. 10.1115/1.4038598
18.
Gaikwad
,
A.
,
Imani
,
F.
,
Yang
,
H.
,
Reutzel
,
E.
, and
Rao
,
P.
,
2019
, “
In Situ Monitoring of Thin-Wall Build Quality in Laser Powder Bed Fusion Using Deep Learning
,”
Smart Sustainable Manuf. Syst.
,
3
(
1
), p.
20190027
. 10.1520/SSMS20190027
19.
Scime
,
L.
, and
Beuth
,
J.
,
2018
, “
Anomaly Detection and Classification in a Laser Powder bed Additive Manufacturing Process Using a Trained Computer Vision Algorithm
,”
Addit. Manuf.
,
19
, pp.
114
126
. 10.1016/j.addma.2017.11.009
20.
Scime
,
L.
, and
Beuth
,
J.
,
2018
, “
A Multi-Scale Convolutional Neural Network for Autonomous Anomaly Detection and Classification in a Laser Powder bed Fusion Additive Manufacturing Process
,”
Addit. Manuf.
,
24
, pp.
273
286
. 10.1016/j.addma.2018.09.034
21.
Williams
,
J.
,
Dryburgh
,
P.
,
Clare
,
A.
,
Rao
,
P.
, and
Samal
,
A.
,
2018
, “
Defect Detection and Monitoring in Metal Additive Manufactured Parts Through Deep Learning of Spatially Resolved Acoustic Spectroscopy Signals
,”
Smart Sustainable Manuf. Syst.
,
2
(
1
), p.
20180035
. 10.1520/SSMS20180035
22.
Isola
,
P.
,
Zhu
,
J.-Y.
,
Zhou
,
T.
, and
Efros
,
A. A.
,
2017
, “
Image-to-Image Translation with Conditional Adversarial Networks
,”
2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
,
IEEE, Honolulu, HI
, pp.
5967
5976
. 10.1109/CVPR.2017.632
23.
Ronneberger
,
O.
,
Fischer
,
P.
, and
Brox
,
T.
,
2015
, “U-Net: Convolutional Networks for Biomedical Image Segmentation,”
Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015
,
N
Navab
,
J
Hornegger
,
WM
Wells
, and
AF
Frangi
, ed.,
Springer International Publishing
,
Cham
, pp.
234
241
. 10.1007/978-3-319-24574-4_28
24.
Long
,
J.
,
Shelhamer
,
E.
, and
Darrell
,
T.
,
2015
, “
Fully Convolutional Networks for Semantic Segmentation
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
,
Boston, MA
,
June 7–12
, pp.
3431
3440
.
25.
Ioffe
,
S.
, and
Szegedy
,
C.
,
2015
, “
Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
,”
Proceedings of the 32nd International Conference on Machine Learning - Volume 37
,
Lille, France
,
July 6–11
.
26.
Nair
,
V.
, and
Hinton
,
G. E.
,
2010
, “
Rectified Linear Units Improve Restricted Boltzmann Machines
,”
Proceedings of the 27th international conference on machine learning (ICML-10)
,
Haifa, Israel
,
June 21–24
, pp.
807
814
.
27.
Fan
,
H.
,
Su
,
H.
, and
Guibas
,
L. J.
,
2017
, “
A Point Set Generation Network for 3D Object Reconstruction From a Single Image
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
,
Honolulu, HI
,
July 21–26
, pp.
605
613
.
28.
Milletari
,
F.
,
Navab
,
N.
, and
Ahmadi
,
S.-A.
,
2016
, “
V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation
,”
2016 Fourth International Conference on 3D Vision (3DV)
,
IEEE
, Stanford, CA
, pp.
565
571
. 10.1109/3DV.2016.79
29.
Zhou
,
T.
,
Krahenbuhl
,
P.
,
Aubry
,
M.
,
Huang
,
Q.
, and
Efros
,
A. A.
,
2016
, “
Learning Dense Correspondence via 3D-Guided Cycle Consistency
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
,
Las Vegas, NV
,
June 26–July 1
, pp.
117
126
.
30.
Zhu
,
J.-Y.
,
Park
,
T.
,
Isola
,
P.
, and
Efros
,
A. A.
,
2017
, “
Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial Networks
,”
2017 IEEE International Conference on Computer Vision (ICCV)
,
Venice, Italy
,
Oct. 22–29
.
31.
Godard
,
C.
,
Mac Aodha
,
O.
, and
Brostow
,
G. J.
,
2017
, “
Unsupervised Monocular Depth Estimation With Left-Right Consistency
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
,
Honolulu, HI
,
July 21–26
, pp.
270
279
.
32.
Srivastava
,
N.
,
Hinton
,
G.
,
Krizhevsky
,
A.
,
Sutskever
,
I.
, and
Salakhutdinov
,
R.
,
2014
, “
Dropout: A Simple Way to Prevent Neural Networks From Overfitting
,”
J. Mach. Learn. Res.
,
15
, pp.
1929
1958
.
33.
Huang
,
J.
,
Kwok
,
T.-H.
, and
Zhou
,
C.
,
2019
, “
Parametric Design for Human Body Modeling by Wireframe-Assisted Deep Learning
,”
Comput.-Aided Des.
,
108
, pp.
19
29
. 10.1016/j.cad.2018.10.004
34.
Krizhevsky
,
A.
,
Sutskever
,
I.
, and
Hinton
,
G. E.
,
2012
, “ImageNet Classification With Deep Convolutional Neural Networks,”
Advances in Neural Information Processing Systems 25
,
F
Pereira
,
CJC
Burges
,
L
Bottou
, and
KQ
Weinberger
,
Curran Associates, Inc.
, pp.
1097
1105
.
35.
Paszke
,
A.
,
Gross
,
S.
,
Chintala
,
S.
,
Chanan
,
G.
,
Yang
,
E.
,
DeVito
,
Z.
,
Lin
,
Z.
,
Desmaison
,
A.
,
Antiga
,
L.
, and
Lerer
,
A.
,
2017
,
Automatic Differentiation in PyTorch
.
36.
Kingma
,
D. P.
, and
Ba
,
J.
,
2015
, “
Adam: A Method for Stochastic Optimization
,”
3rd International Conference on Learning Representations, ICLR 2015
,
San Diego, CA
,
May 7–9
.
You do not currently have access to this content.