Abstract

During electrochemical machining (ECM) of metals, the electrolyte gets polluted by heavy metal ions and compounds. This creates crucial process control problems due to variation in electrical conductivity and is an environmental threat if the solution is discharged without treatment. In this study, an economical, simple multistep treatment system based on ion-exchange was developed to remove metal ions from the polluted electrolyte. We specifically looked at the electrolytic discharge from ECM of copper pieces, which is widely used in biomedical and electronic applications. Three different ion-exchange media were used: (1) a natural zeolite, (2) a special type of adsorbent quantitative filter paper, and (3) a polymer-based synthetic cation-holder resin (Lewatit TP 207) that works well with copper ions. Optimization studies for pH and contact time showed the following: (1) by using zeolite alone, and after 2 h of mixing, 43.2% of Cu2+ could be removed; (2) by using the filter paper alone, and after three times of filtration, 90% of Cu2+ could be removed; and (3) by using Lewatit TP 207 alone, 100% of Cu2+ could be removed. While Lewatit TP 207 allowed for 100% removal of Cu2+, its use alone is costly and troublesome due to constraints from service life and multistep regeneration and conditioning with strong acids and bases, respectively. The most simple and economical scheme for removal of Cu2+ and recycling the electrolyte for reuse was the three-step zeolite-filter-resin treatment system.

References

1.
Han
,
W.
, and
Fang
,
F.
,
2019
, “
Electropolishing of 316L Stainless Steel Using Sulfuric Acid-Free Electrolyte
,”
ASME J. Manuf. Sci. Eng.
,
141
(
10
), p.
101015
. 10.1115/1.4044518
2.
Li
,
S.
,
Wu
,
Y.
,
Nomura
,
M.
, and
Fujii
,
T.
,
2018
, “
Fundamental Machining Characteristics of Ultrasonic-Assisted Electrochemical Grinding of Ti–6Al–4V
,”
ASME J. Manuf. Sci. Eng.
,
140
(
7
), p.
071009
. 10.1115/1.4039855
3.
Zhao
,
Y. H.
,
Kunieda
,
M.
,
Obi
,
N.
, and
Watanabe
,
S.
,
2017
, “
Development of Electrolyte Filtration System for ECM Taking Into Account Removal of Chromium (VI) Ions
,”
Precis. Eng. J. Int. Soc. Precis. Eng. Nanotechnol.
,
49
(
7
), pp.
211
219
. 10.1016/j.precisioneng.2017.02.009
4.
Aoki
,
I.
, and
Sasada
,
M.
,
2005
, “
Burr-Free Microblanking Using Piezoelectric Actuator
,”
ASME J. Manuf. Sci. Eng.
,
126
(
4
), pp.
653
658
. 10.1115/1.1812775
5.
Hocheng
,
H.
,
Sun
,
Y. H.
,
Lin
,
S. C.
, and
Kao
,
P. S.
,
2003
, “
A Material Removal Analysis of Electrochemical Machining Using Flat-end Cathode
,”
J. Mater. Process. Technol.
,
140
(
1
), pp.
264
268
. 10.1016/S0924-0136(03)00791-X
6.
Boden
,
P. J.
, and
Evans
,
J. M.
,
1969
, “
Selection of Electrolytes for Electrochemical Machining
,”
Nature
,
222
(
5191
), pp.
377
378
. 10.1038/222377a0
7.
Boden
,
P. J.
, and
Evans
,
J. M.
,
1969
, “
An Investigation of Difference Between NaCl and NaClO3 as Electrolytes in Electrochemical Machining
,”
J. Electrochem. Soc.
,
116
(
12
), pp.
1715
1715
. 10.1149/1.2411677
8.
Bhattacharyya
,
B.
,
Munda
,
J.
, and
Malapati
,
M.
,
2004
, “
Advancement in Electrochemical Micro-Machining
,”
Int. J. Mach. Tools Manuf.
,
44
(
15
), pp.
1577
1589
. 10.1016/j.ijmachtools.2004.06.006
9.
Rajurkar
,
K. P.
,
Zhu
,
D.
, and
Wei
,
B.
,
1998
, “
Minimization of Machining Allowance in Electrochemical Machining
,”
CIRP Ann. Manuf. Technol.
,
47
(
1
), pp.
165
168
.
10.
Bhattacharyya
,
B.
,
Mitra
,
S.
, and
Boro
,
A. K.
,
2002
, “
Electrochemical Machining: New Possibilities for Micromachining
,”
Rob. Comput. Integr. Manuf.
,
18
(
3–4
), pp.
283
289
. 10.1016/S0736-5845(02)00019-4
11.
Li
,
Z. Y.
, and
Niu
,
Z. W.
,
2010
, “
Process Parameter Optimization and Experimental Study of Micro-Holes in Electrochemical Micromachining Using Pulse Current
,”
Adv. Mater. Res.
,
135
(
10
), pp.
293
297
. www.scientific.net/AMR.135.293
12.
Bhattacharyya
,
B.
, and
Munda
,
J.
,
2003
, “
Experimental Investigation Into Electrochemical Micromachining (EMM) Process
,”
J. Mater. Process. Technol.
,
140
(
1–3
), pp.
287
291
. 10.1016/S0924-0136(03)00722-2
13.
De Silva
,
A. K. M.
,
Altena
,
H. S. J.
, and
McGeough
,
J. A.
,
2000
, “
Precision ECM by Process Characteristic Modelling
,”
CIRP Ann. Manuf. Technol.
,
49
(
1
), pp.
151
156
. 10.1016/S0007-8506(07)62917-5
14.
Gadd
,
G. M.
,
2009
, “
Biosorption: Critical Review of Scientific Rationale, Environmental Importance and Significance for Pollution Treatment
,”
J. Chem. Technol. Biotechnol.
,
84
(
1
), pp.
13
28
. 10.1002/jctb.1999
15.
Bruhn
,
C. G.
,
Vilches
,
C.
, and
Cid
,
H. J.
,
1999
, “
Optimization of Flame Atomic Absorption Spectrometry With Preconcetration by Flow-Injection on On-Line Sorbent Extraction of Cadmium and Lead in Biological Materials
,”
Boletin de la Sociedad Chilena de Quimica
,
44
(
3
), pp.
321
335
.
16.
Dabrowski
,
A.
,
Hubicki
,
Z.
,
Podkościelny
,
P.
, and
Robens
,
E.
,
2004
, “
Selective Removal of the Heavy Metal Ions From Waters and Industrial Wastewaters by Ion-Exchange Method
,”
Chemosphere
,
56
(
2
), pp.
91
106
. 10.1016/j.chemosphere.2004.03.006
17.
Yeager
,
H. L.
, and
Steck
,
A.
,
1979
, “
Ion-Exchange Selectivity and Metal ion Separations With a Perfluorinated Cation-Exchange Polymer
,”
Anal. Chem.
,
51
(
7
), pp.
862
865
. 10.1021/ac50043a020
18.
Divrikli
,
U.
,
Soylak
,
M.
, and
Elci
,
L.
,
2008
, “
Determination of Total Chromium by Flame Atomic Absorption Spectrometry After Coprecipitation by Cerium (IV) Hydroxide
,”
Environ. Monit. Assess.
,
138
(
1–3
), pp.
167
172
. 10.1007/s10661-007-9754-7
19.
Djedidi
,
Z.
,
Bouda
,
M.
,
Souissi
,
M. A.
,
Cheikh
,
R. B.
,
Mercier
,
G.
,
Tyagi
,
R. D.
, and
Blais
,
J.-F.
,
2009
, “
Metals Removal From Soil, Fly Ash and Sewage Sludge Leachates by Precipitation and Dewatering Properties of the Generated Sludge
,”
J. Hazard. Mater.
,
172
(
2–3
), pp.
1372
1382
. 10.1016/j.jhazmat.2009.07.144
20.
Blöcher
,
C.
,
Dorda
,
J.
,
Mavrov
,
V.
,
Chmiel
,
H.
,
Lazaridis
,
N. K.
, and
Matis
,
K. A.
,
2003
, “
Hybrid Flotation—Membrane Filtration Process for the Removal of Heavy Metal Ions From Wastewater
,”
Water Res.
,
37
(
16
), pp.
4018
4026
. 10.1016/S0043-1354(03)00314-2
21.
Narin
,
I.
,
Soylak
,
M.
,
Elci
,
L.
, and
Dogan
,
M.
,
2001
, “
Separation and Enrichment of Chromium, Copper, Nickel and Lead in Surface Seawater Samples on a Column Filled With Amberlite XAD-2000
,”
Anal. Lett.
,
34
(
11
), pp.
1935
1947
. 10.1081/AL-100106123
22.
Priya
,
P. G.
,
Basha
,
C. A.
,
Ramamurthi
,
V.
, and
Begum
,
S. N.
,
2009
, “
Recovery and Reuse of Ni(II) From Rinsewater of Electroplating Industries
,”
J. Hazard. Mater.
,
163
(
2
), pp.
899
909
. 10.1016/j.jhazmat.2008.07.072
23.
Turkman
,
M.
,
Moulai-Mostefa
,
N.
, and
Zouambia
,
Y.
,
2019
, “
Biosorption of Cu(II) From Aqueous Solutions by the Residues of Cider Vinegar as New Biosorbents: Comparative Study With Modified Citrange Peels
,”
Desalin. Water Treat.
,
142
(
2
), pp.
279
292
. 10.5004/dwt.2019.23436
24.
Kuyucak
,
N.
, and
Volesky
,
B.
,
1988
, “
Biosorbents for Recovery of Metals From Industrial Solutions
,”
Biotechnol. Lett.
,
10
(
2
), pp.
137
142
. 10.1007/BF01024641
25.
Gode
,
F.
, and
Pehlivan
,
E.
,
2003
, “
A Comparative Study of Two Chelating Ion-Exchange Resins for the Removal of Chromium(III) From Aqueous Solution
,”
J. Hazard. Mater.
,
100
(
1–3
), pp.
231
243
. 10.1016/S0304-3894(03)00110-9
26.
Sari
,
A.
,
Tuzen
,
M.
,
Cıtak
,
D.
, and
Soylak
,
M.
,
2007
, “
Adsorption Characteristics of Cu(II) and Pb(II) Onto Expanded Perlite From Aqueous Solution
,”
J. Hazard. Mater.
,
148
(
1–2
), pp.
387
394
. 10.1016/j.jhazmat.2007.02.052
27.
Ozverdi
,
A.
, and
Erdem
,
M.
,
2006
, “
Cu2+, Cd2+ and Pb2+ Adsorption From Aqueous Solutions by Pyrite and Synthetic Iron Sulphide
,”
J. Hazard. Mater.
,
137
(
1
), pp.
626
632
. 10.1016/j.jhazmat.2006.02.051
28.
Han
,
R.
,
Zou
,
W.
,
Zhang
,
Z.
,
Shi
,
J.
, and
Yang
,
J.
,
2006
, “
Removal of Copper(II) and Lead(II) From Aqueous Solution by Manganese Oxide Coated Sand I. Characterization and Kinetic Study
,”
J. Hazard. Mater.
,
137
(
1
), pp.
384
395
. 10.1016/j.jhazmat.2006.02.021
29.
Erdem
,
E.
,
Karapinar
,
N.
, and
Donat
,
R.
,
2004
, “
The Removal of Heavy Metal Cations by Natural Zeolites
,”
J. Colloid Interface Sci.
,
280
(
2
), pp.
309
314
. 10.1016/j.jcis.2004.08.028
30.
Babel
,
S.
, and
Kurniawan
,
T. A.
,
2003
, “
Low-Cost Adsorbents for Heavy Metals Uptake From Contaminated Water: A Review
,”
J. Hazard. Mater.
,
97
(
1–3
), pp.
219
243
. 10.1016/S0304-3894(02)00263-7
31.
Frew
,
R. G.
, and
Pickering
,
W. F.
,
1970
, “
The Sorption of Metal Salts by Filter Paper
,”
J. Chromatogr., A
,
47
, pp.
86
91
. 10.1016/0021-9673(70)80009-7
32.
Ultee
,
A. J.
, and
Hartel
,
J.
,
1955
, “
Chromatographic Determination of Carboxyl Groups in Filter Paper
,”
Anal. Chem.
,
27
(
4
), pp.
557
560
. 10.1021/ac60100a019
33.
Ivanova
,
E.
,
Benkhedda
,
K.
, and
Adams
,
F.
,
1998
, “
Determination of Copper, Manganese and Nickel in Biological Samples and Sea-Water by Flow Injection On-Line Sorption Preconcentration in a Knotted Reactor Coupled With Electrothermal Atomic Absorption Spectrometry
,”
J. Anal. At. Spectrom.
,
13
(
6
), pp.
527
531
. 10.1039/a709150h
34.
Minczewski
,
J.
,
Chwastowska
,
J.
, and
Dybczyński
,
R.
,
1982
,
Separation and Preconcentration Methods in Inorganic Trace Analysis (Ellis Horwood Series in Analytical Chemistry
),
E. Horwood
,
Chichester
.
35.
Mizuike
,
A.
,
1983
,
Enrichment Techniques for Inorganic Trace Analysis
,
Springer-Verlag
,
Berlin
, p.
144
.
36.
Asresahegnova
,
Z.
, and
Jelínek
,
L.
,
2009
, “
Copper and Molybdenum Sorption Onto Selective Ion Exchangers
,”
Ion Exch. Lett.
,
2
(
3
), pp.
38
41
.
37.
Silva
,
R. M.
,
Manso
,
J. P. H.
,
Rodrigues
,
J. R. C.
, and
Lagoa
,
R. J. L.
,
2008
, “
A Comparative Study of Alginate Beads and an Ion-Exchange Resin for the Removal of Heavy Metals From a Metal Plating Effluent
,”
J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng.
,
43
(
11
), pp.
1311
1317
. 10.1080/10934520802177953
38.
Pehlivan
,
E.
, and
Altun
,
T.
,
2007
, “
Ion-Exchange of Pb2+, Cu2+, Zn2+, Cd2+, and Ni2+ Ions From Aqueous Solution by Lewatit CNP 80
,”
J. Hazard. Mater.
,
140
(
1–2
), pp.
299
307
. 10.1016/j.jhazmat.2006.09.011
39.
Albrecht
,
T. W. J.
,
Addai-Mensah
,
J.
, and
Fornasiero
,
D.
,
2011
,
Chemeca 2011: Engineering a Better World
,
Sydney Hilton Hotel, NSW, Australia
, Sept. 18–
21
,
Barton, A.C.T. Engineers Australia
,
Australia
, pp.
2100
2110
.
You do not currently have access to this content.