Abstract

Surface roughness is a well-known consequence of additive manufacturing methods, particularly powder bed fusion processes. To properly design parts for additive manufacturing, a comprehensive understanding of the inherent roughness is necessary. While many researchers have measured different surface roughness resultant from a variety of parameters in the laser powder bed fusion process, few have succeeded in determining causal relationships due to the large number of variables at play. To assist the community in understanding the roughness in laser powder bed fusion processes, this study explored several studies from the literature to identify common trends and discrepancies amongst roughness data. Then, an experimental study was carried out to explore the influence of certain process parameters on surface roughness. Through these comparisons, certain local and global roughness trends have been identified and discussed, as well as a new framework for considering the effect of process parameters on surface roughness.

References

References
1.
Badrossamay
,
M.
,
Yasa
,
E.
,
Van Vaerenbergh
,
J.
, and
Kruth
,
J.-P.
,
2009
, “
Improving Productivity Rate in SLM of Commercial Steel Powders
,”
Rapid 2009 Conference and Expo
,
Schaumburg, IL
, pp.
1
9
.
2.
Calignano
,
F.
,
Manfredi
,
D.
,
Ambrosio
,
E. P.
,
Iuliano
,
L.
, and
Fino
,
P.
,
2013
, “
Influence of Process Parameters on Surface Roughness of Aluminum Parts Produced by DMLS
,”
Int. J. Adv. Manuf. Technol.
,
67
(
9–12
), pp.
2743
2751
. 10.1007/s00170-012-4688-9
3.
Hamidi
,
M.
,
Gastaldi
,
D.
,
Francesca
,
N.
, and
Vedani
,
M.
,
2018
, “
On Morphological Surface Features of the Parts Printed by Selective Laser Melting (SLM)
,”
Addit. Manuf.
,
24
(
October
), pp.
373
377
. 10.1016/j.addma.2018.10.011
4.
Pupo
,
Y.
,
Monroy
,
K. P.
, and
Ciurana
,
J.
,
2015
, “
Influence of Process Parameters on Surface Quality of CoCrMo Produced by Selective Laser Melting
,”
Int. J. Adv. Manuf. Technol.
,
80
(
5–8
), pp.
985
995
. 10.1007/s00170-015-7040-3
5.
Qiu
,
C.
,
Panwisawas
,
C.
,
Ward
,
M.
,
Basoalto
,
H. C.
,
Brooks
,
J. W.
, and
Attallah
,
M. M.
,
2015
, “
Acta Materialia on the Role of Melt Flow Into the Surface Structure and Porosity Development During Selective Laser Melting
,”
Acta Mater.
,
96
, pp.
72
79
. 10.1016/j.actamat.2015.06.004
6.
Shrestha
,
S.
, and
Chou
,
K.
,
2017
, “
A Build Surface Study of Powder-Bed Electron Beam Additive Manufacturing by 3D Thermo-Fluid Simulation and White-Light Interferometry
,”
Int. J. Mach. Tools Manuf.
,
121
(
April
), pp.
1
13
. 10.1016/j.ijmachtools.2017.04.005
7.
Simchi
,
A.
,
2004
, “
The Role of Particle Size on the Laser Sintering of Iron Powder
,”
Metall. Mater. Trans. B
,
35
(
5
), pp.
937
948
.
8.
Spierings
,
A. B. B.
,
Herres
,
N.
,
Levy
,
G.
, and
Authors
,
F.
,
2011
, “
Influence of the Particle Size Distribution on Surface Quality and Mechanical Properties in AM Steel Parts
,”
Rapid Prototyp. J.
,
17
(
3
), pp.
195
202
. 10.1108/13552541111124770
9.
Wang
,
D.
,
Liu
,
Y.
,
Yang
,
Y.
, and
Xiao
,
D.
,
2016
, “
Theoretical and Experimental Study on Surface Roughness of 316L Stainless Steel Metal Parts Obtained Through Selective Laser Melting
,”
Rapid Prototyp. J.
,
22
(
4
), pp.
706
716
. 10.1108/RPJ-06-2015-0078
10.
Wang
,
D.
,
Yang
,
Y.
,
Yi
,
Z.
, and
Su
,
X.
,
2013
, “
Research on the Fabricating Quality Optimization of the Overhanging Surface in SLM Process
,”
Int. J. Adv. Manuf. Technol.
,
65
(
9–12
), pp.
1471
1484
. 10.1007/s00170-012-4271-4
11.
Wang
,
L. Z.
,
Wang
,
S.
, and
Wu
,
J. J.
,
2017
, “
Experimental Investigation on Densification Behavior and Surface Roughness of AlSi10Mg Powders Produced by Selective Laser Melting
,”
Opt. Laser Technol.
,
96
, pp.
88
96
. 10.1016/j.optlastec.2017.05.006
12.
Yadroitsev
,
I.
, and
Smurov
,
I.
,
2011
, “
Surface Morphology in Selective Laser Melting of Metal Powders
,”
Phys. Procedia
,
12
, pp.
264
270
. 10.1016/j.phpro.2011.03.034
13.
Casalino
,
G.
,
Campanelli
,
S. L.
,
Contuzzi
,
N.
, and
Ludovico
,
A. D.
,
2015
, “
Experimental Investigation and Statistical Optimisation of the Selective Laser Melting Process of a Maraging Steel
,”
Opt. Laser Technol.
,
65
, pp.
151
158
. 10.1016/j.optlastec.2014.07.021
14.
Yakout
,
M.
,
Cadamuro
,
A.
,
Elbestawi
,
M. A.
, and
Veldhuis
,
S. C.
,
2017
, “
The Selection of Process Parameters in Additive Manufacturing for Aerospace Alloys
,”
Int. J. Adv. Manuf. Tech.
,
92
, pp.
2081
2098
.
15.
Cherry
,
J. A.
,
Davies
,
H. M.
,
Mehmood
,
S.
,
Lavery
,
N. P.
,
Brown
,
S. G. R.
, and
Sienz
,
J.
,
2014
, “
Investigation Into the Effect of Process Parameters on Microstructural and Physical Properties of 316L Stainless Steel Parts by Selective Laser Melting
,”
Int. J. Adv. Manuf. Technol.
,
76
(
5–8
), pp.
869
879
. 10.1007/s00170-014-6297-2
16.
DePond
,
P. J.
,
Guss
,
G.
,
Ly
,
S.
,
Calta
,
N. P.
,
Deane
,
D.
,
Khairallah
,
S.
, and
Matthews
,
M. J.
,
2018
, “
In Situ Measurements of Layer Roughness During Laser Powder Bed Fusion Additive Manufacturing Using Low Coherence Scanning Interferometry
,”
Mater. Des.
,
154
, pp.
347
359
. 10.1016/j.matdes.2018.05.050
17.
Kruth
,
J.
,
Badrossamay
,
M.
,
Yasa
,
E.
,
Deckers
,
J.
,
Thijs
,
L.
, and
Van Humbeeck
,
J.
,
2010
, “
Part and Material Properties in Selective Laser Melting of Metals
,”
Proceedings of the 16th International Symposium on Electromachining
,
Shanghai, China
,
Apr. 19–23
.
18.
Li
,
Z.
,
Kucukkoc
,
I.
,
Zhang
,
D. Z.
, and
Liu
,
F.
,
2018
, “
Optimising the Process Parameters of Selective Laser Melting for the Fabrication of Ti6Al4V Alloy
,”
Rapid Prototyp. J.
,
24
(
1
), pp.
150
159
. 10.1108/RPJ-03-2016-0045
19.
Liu
,
B.
,
Wildman
,
R.
,
Tuck
,
C.
,
Ashcroft
,
I.
, and
Hague
,
R.
,
2011
, “
Investigation the Effect of Particle Size Distribution on Processing Parameters Optimisation in Selective Laser Melting Process
,”
Proceedings of the Annual International Solid Freeform Fabrication Symposium
,
Austin, TX
, pp.
227
238
,
University of Texas at Austin
.
20.
Mohammadi
,
M.
, and
Asgari
,
H.
,
2018
, “
Achieving Low Surface Roughness AlSi10Mg 200C Parts Using Direct Metal Laser Sintering
,”
Addit. Manuf.
,
20
, pp.
23
32
. 10.1016/j.addma.2017.12.012
21.
Mumtaz
,
K.
, and
Hopkinson
,
N.
,
2009
, “
Top Surface and Side Roughness of Inconel 625 Parts Processed Using Selective Laser Melting
,”
Rapid Prototyp. J.
,
15
(
2
), pp.
96
103
. 10.1108/13552540910943397
22.
Yang
,
T.
,
Liu
,
T.
,
Liao
,
W.
,
Macdonald
,
E.
,
Wei
,
H.
, and
Chen
,
X.
,
2019
, “
The Influence of Process Parameters on Vertical Surface Roughness of the AlSi10Mg Parts Fabricated by Selective Laser Melting
,”
J. Mater. Process. Technol.
,
266
(
September 2018
), pp.
26
36
. 10.1016/j.jmatprotec.2018.10.015
23.
Tian
,
Y.
,
Tomus
,
D.
,
Rometsch
,
P.
, and
Wu
,
X.
,
2016
, “
Influences of Processing Parameters on Surface Roughness of Hastelloy X Produced by Selective Laser Melting
,”
Addit. Manuf.
,
13
, pp.
103
112
. 10.1016/j.addma.2016.10.010
24.
Cabanettes
,
F.
,
Joubert
,
A.
,
Chardon
,
G.
,
Dumas
,
V.
,
Rech
,
J.
,
Grosjean
,
C.
, and
Dimkovski
,
Z.
,
2018
, “
Topography of as Built Surfaces Generated in Metal Additive Manufacturing: A Multi Scale Analysis From Form to Roughness
,”
Precis. Eng.
,
52
(
October 2017
), pp.
249
265
. 10.1016/j.precisioneng.2018.01.002
25.
Cloots
,
M.
,
Spierings
,
A. B.
, and
Wegener
,
K.
,
2013
, “
Assessing New Support Minimizing Strategies for the Additive Manufacturing Technology SLM
,”
Solid Freeform Fabrication Symposium
,
Austin, TX
,
August 12
.
26.
Fox
,
J. C.
,
Moylan
,
S. P.
, and
Lane
,
B. M.
,
2016
, “
Effect of Process Parameters on the Surface Roughness of Overhanging Structures in Laser Powder Bed Fusion Additive Manufacturing
,”
Procedia CIRP
,
45
, pp.
131
134
. 10.1016/j.procir.2016.02.347
27.
Covarrubias
,
E. E.
, and
Eshraghi
,
M.
,
2018
, “
Effect of Build Angle on Surface Properties of Nickel Superalloys Processed by Selective Laser Melting
,”
JOM
,
70
(
3
), pp.
336
342
. 10.1007/s11837-017-2706-y
28.
Kleszczynski
,
S
,
Ladewig
,
A
,
Friedberger
,
K
,
Zur Jacobsmühlen
,
J
,
Merhof
,
D
, and
Witt
,
G
,
2015
, “
Position Dependency of Surface Roughness in Parts From Laser Beam
,”
26th International Solid Free Form Fabrication (SFF) Symposium
,
Austin, TX
,
August 10
.
29.
Koutiri
,
I.
,
Pessard
,
E.
,
Peyre
,
P.
,
Amlou
,
O.
, and
De Terris
,
T.
,
2018
, “
Influence of SLM Process Parameters on the Surface Finish, Porosity Rate and Fatigue Behavior of As-Built Inconel 625 Parts
,”
J. Mater. Process. Technol.
,
255
(
June 2017
), pp.
536
546
. 10.1016/j.jmatprotec.2017.12.043
30.
Yasa
,
E.
, and
Kruth
,
J. P.
,
2011
, “
Application of Laser Re-Melting on Selective Laser Melting Parts
,”
Adv. Prod. Eng. Manage.
,
6
, pp.
259
270
. 10.1108/13552541111156450
31.
Yasa
,
E.
,
Kruth
,
J.
, and
Deckers
,
J.
,
2011
, “
Manufacturing Technology Manufacturing by Combining Selective Laser Melting and Selective Laser Erosion/Laser Re-Melting
,”
CIRP Ann.
,
60
(
1
), pp.
263
266
. 10.1016/j.cirp.2011.03.063
32.
Yasa
,
E.
, and
Kruth
,
J.
,
2010
, “
Investigation of Laser and Process Parameters for Selective Laser Erosion
,”
34
, pp.
101
112
. 10.1016/j.precisioneng.2009.04.001
33.
Alrbaey
,
K.
,
Wimpenny
,
D.
,
Tosi
,
R.
,
Manning
,
W.
, and
Moroz
,
A.
,
2014
, “
On Optimization of Surface Roughness of Selective Laser Melted Stainless Steel Parts: A Statistical Study
,”
J. Mater. Eng. Perform.
,
23
(
6
), pp.
2139
2148
. 10.1007/s11665-014-0993-9
34.
Vaithilingam
,
J.
,
Goodridge
,
R. D.
,
Hague
,
R. J. M.
,
Christie
,
S. D. R.
, and
Edmondson
,
S.
,
2016
, “
Journal of Materials Processing Technology the Effect of Laser Remelting on the Surface Chemistry of Ti6al4V Components Fabricated by Selective Laser Melting
,”
J. Mater. Process. Technol.
,
232
, pp.
1
8
. 10.1016/j.jmatprotec.2016.01.022
35.
Ahn
,
I. H.
,
Moon
,
S. K.
,
Bi
,
G.
, and
Wei
,
J.
,
2016
, “
Influence of the Geometric Factor for the Width of the Contour Scan in Selective Laser Melting
,”
Proceedings of the 2nd International Conference on Progress in Additive Manufacturing
,
Singapore
.
36.
Sarkar
,
S.
,
Porwal
,
A.
,
Yaswanth
,
N.
, and
Nath
,
A. K.
,
2018
, “
A Study on Effect of Different Process Parameters on the Quality of Overhang Surface Produced by Selective Laser Melting
,”
ASME 2018 13th International Manufacturing Science and Engineering Conference
,
College Station, TX
,
June 18–22
, pp.
1
7
.
37.
Kudzal
,
A.
,
Mcwilliams
,
B.
,
Hofmeister
,
C.
,
Kellogg
,
F.
,
Yu
,
J.
,
Taggart-scarff
,
J.
, and
Liang
,
J.
,
2017
, “
Effect of Scan Pattern on the Microstructure and Mechanical Properties of Powder Bed Fusion Additive Manufactured 17-4 Stainless Steel
,”
Mater. Des.
,
133
, pp.
205
215
. 10.1016/j.matdes.2017.07.047
38.
Liu
,
B.
,
Wildman
,
R.
,
Tuck
,
C.
,
Ashcroft
,
I.
, and
Hague
,
R.
,
2011
, “
Investigation the Effect of Particle Size Distribution on Processing Parameters Optimization in Selective Laser Melting Process
,”
SFF
,
Austin, TX
.
39.
Del Re
,
F.
,
Contaldi
,
V.
,
Astarita
,
A.
,
Palumbo
,
B.
,
Squillace
,
A.
,
Corrado
,
P.
, and
Di Petta
,
P.
,
2018
, “
Statistical Approach for Assessing the Effect of Powder Reuse on the Final Quality of AlSi10Mg Parts Produced by Laser Powder Bed Fusion Additive Manufacturing
,”
Int. J. Adv. Manuf. Technol.
,
97
(
5–8
), pp.
2231
2240
. 10.1007/s00170-018-2090-y
40.
Jamshidinia
,
M.
, and
Kovacevic
,
R.
,
2015
, “
The Influence of Heat Accumulation on the Surface Roughness in Powder-Bed Additive Manufacturing
,”
Surf. Topogr. Metrol. Prop.
,
3
(
1
), p.
014003
. 10.1088/2051-672X/3/1/014003
41.
Stimpson
,
C. K.
,
Snyder
,
J. C.
,
Thole
,
K. A.
, and
Mongillo
,
D.
,
2016
, “
Scaling Roughness Effects on Pressure Loss and Heat Transfer of Additively Manufactured Channels
,”
ASME J. Turbomach.
,
139
(
2
), p.
021003
. 10.1115/1.4034555
42.
Matthews
,
M. J.
,
Guss
,
G.
,
Khairallah
,
S. A.
,
Rubenchik
,
A. M.
,
Depond
,
P. J.
, and
King
,
W. E.
,
2016
, “
Acta Materialia Denudation of Metal Powder Layers in Laser Powder Bed Fusion Processes
,”
Acta Mater.
,
114
, pp.
33
42
. 10.1016/j.actamat.2016.05.017
43.
Bidare
,
P.
,
Bitharas
,
I.
,
Ward
,
R. M.
,
Attallah
,
M. M.
, and
Moore
,
A. J.
,
2018
, “
Fluid and Particle Dynamics in Laser Powder Bed Fusion
,”
Acta Mater.
,
142
, pp.
107
120
. 10.1016/j.actamat.2017.09.051
44.
Mukherjee
,
T.
,
Manvatkar
,
V.
,
De
,
A.
, and
Debroy
,
T.
,
2017
, “
Dimensionless Numbers in Additive Manufacturing
,”
J. Appl. Phys.
,
121
(
064904
), p.
64904
. 10.1063/1.4976006
45.
Wang
,
L.
,
Wei
,
Q. S.
,
Shi
,
Y. S.
,
Liu
,
J. H.
, and
He
,
W. T.
,
2011
, “
Experimental Investigation Into the Single-Track of Selective Laser Melting of IN625
,”
Adv. Mater. Res.
,
233–235
, pp.
2844
2848
. 10.4028/www.scientific.net/AMR.233-235.2844
46.
Yadroitsev
,
I.
,
Yadroitsava
,
I.
,
Bertrand
,
P.
, and
Smurov
,
I.
,
2012
, “
Factor Analysis of Selective Laser Melting Process Parameters and Geometrical Characteristics of Synthesized Single Tracks
,”
Rapid Prototyp. J.
,
18
(
3
), pp.
201
208
. 10.1108/13552541211218117
47.
Bertoli
,
U. S.
,
Wolfer
,
A. J.
,
Matthews
,
M. J.
,
Delplanque
,
J. R.
, and
Schoenung
,
J. M.
,
2017
, “
On the Limitations of Volumetric Energy Density as a Design Parameter for Selective Laser Melting
,”
JMADE
,
113
, pp.
331
340
. 10.1016/j.matdes.2016.10.037
48.
King
,
W. E.
,
Barth
,
H. D.
,
Castillo
,
V. M.
,
Gallegos
,
G. F.
,
Gibbs
,
J. W.
,
Hahn
,
D. E.
,
Kamath
,
C.
, and
Rubenchik
,
A. M.
,
2014
, “
Journal of Materials Processing Technology Observation of Keyhole-Mode Laser Melting in Laser Powder-Bed Fusion Additive Manufacturing
,”
J. Mater. Process. Technol.
,
214
(
12
), pp.
2915
2925
. 10.1016/j.jmatprotec.2014.06.005
49.
Hann
,
D. B.
,
Iammi
,
J.
, and
Folkes
,
J.
,
2011
, “
A Simple Methodology for Predicting Laser-Weld Properties From Material and Laser Parameters
,”
J. Phys. D Appl. Phys.
,
44
(
44
). 10.1088/0022-3727/44/44/445401
50.
Rubenchik
,
A. M.
,
King
,
W. E.
, and
Wu
,
S. S.
,
2018
, “
Scaling Laws for the Additive Manufacturing
,”
J. Mater. Process. Technol.
,
257
(
October 2017
), pp.
234
243
. 10.1016/j.jmatprotec.2018.02.034
51.
Khorasani
,
A. M.
,
Gibson
,
I.
, and
Ghaderi
,
A. R.
,
2018
, “
Rheological Characterization of Process Parameters Influence on Surface Quality of Ti-6Al-4V Parts Manufactured by Selective Laser Melting
,”
Int. J. Adv. Manuf. Technol.
,
V
(
9–12
), pp.
3761
3775
. 10.1007/s00170-018-2168-6
52.
Aqilah
,
D. N.
,
Sayuti
,
A. K. M.
,
Farazila
,
Y.
,
Suleiman
,
D. Y.
,
Amirah
,
M. A. N.
, and
Izzati
,
W. B. W. N.
,
2018
, “
Effects of Process Parameters on the Surface Roughness of Stainless Steel 316L Parts Produced by Selective Laser Melting
,”
J. Test. Eval.
,
46
(
4
), p.
20170140
. 10.1520/JTE20170140
53.
Boschetto
,
A.
,
Bottini
,
L.
, and
Veniali
,
F.
,
2017
, “
Roughness Modeling of AlSi10Mg Parts Fabricated by Selective Laser Melting
,”
J. Mater. Process. Technol.
,
241
, pp.
154
163
. 10.1016/j.jmatprotec.2016.11.013
54.
Leary
,
M.
,
2016
,
Surface Roughness Optimisation for Selective Laser Melting (SLM): Accommodating Relevant and Irrelevant Surfaces
,
Elsevier Ltd
.,
New York
.
55.
Stimpson
,
C. K.
,
Snyder
,
J. C.
,
Thole
,
K. A.
, and
Mongillo
,
D.
,
2017
, “
Scaling Roughness Effects on Pressure Loss and Heat Transfer of Additively Manufactured Channels
,”
ASME J. Turbomach.
,
139
(
2
). 10.1115/1.4034555
56.
Grimm
,
T.
,
Wiora
,
G.
, and
Witt
,
G.
,
2015
, “
Characterization of Typical Surface Effects in Additive Manufacturing With Confocal Microscopy
,”
Surf. Topogr. Metrol. Prop.
,
3
(
1
), p.
014001
. 10.1088/2051-672X/3/1/014001
57.
Wang
,
D.
,
Mai
,
S.
,
Xiao
,
D.
, and
Yang
,
Y.
,
2016
, “
Surface Quality of the Curved Overhanging Structure Manufactured From 316-L Stainless Steel by SLM
,”
Int. J. Adv. Manuf. Technol.
,
86
(
1–4
), pp.
781
792
. 10.1007/s00170-015-8216-6
You do not currently have access to this content.