Abstract

Direct laser metal deposition (DLMD) is a promising additive manufacturing technique which has a huge potential in remanufacturing and restoration of high-value dies/molds and aerospace components. The residual stresses developed in the material deposited via DLMD affect the structural integrity of the restored components. The service life of the restored component will be compromised if tensile residual stresses are present in the deposited layer. The residual stresses originate due to differential thermal expansion/contraction and martensitic transformation-driven volumetric dilation and transformation-induced plasticity. The influence of martensitic transformation and processing conditions on the residual stresses of DLMD-processed components needs to be understood and modeled for sustainable repair. Hence, a finite element model has been developed to capture the coupled effect of thermomechanics and martensitic transformation on the evolution of residual stresses in DLMD. In this study, the individual and coupled effects of strains due to volume dilation and transformation-induced plasticity on residual stress evolution have been analyzed for the deposition of crucible particle metallurgy (CPM) 9 V on H-13 tool steel. The finite element model has been experimentally validated using X-ray and neutron diffractions. The inclusion of both transformation strains in the residual stress decreases the prediction errors of peak tensile residual stress from ∼48% to ∼15%. The fully coupled thermomechanical and metallurgical model has been used to obtain a critical linear mass density (m˙/v) corresponding to the onset of a fully compressive longitudinal residual stress state in the deposited layer to ensure sustainable repair.

References

References
1.
Vilar
,
R.
,
2014
, “
Laser Powder Deposition
,”
Mater. Processes
,
10
, pp.
163
216
. 10.1016/B978-0-08-096532-1.01005-0
2.
Toyserkani
,
E.
,
Khajepour
,
A.
, and
Corbin
,
S.
,
2004
,
Laser Cladding
,
CRC Press
,
Boca Raton, FL
.
3.
Bennett
,
J.
,
Garcia
,
D.
,
Kendrick
,
M.
,
Hartman
,
T.
,
Hyatt
,
G.
,
Ehmann
,
K.
,
You
,
F.
, and
Cao
,
J.
,
2019
, “
Repairing Automotive Dies With Directed Energy Deposition: Industrial Application and Life Cycle Analysis
,”
ASME J. Manuf. Sci. Eng.
,
141
(
2
), p.
021019
. 10.1115/1.4042078
4.
Jhavar
,
S.
,
Paul
,
C. P.
, and
Jain
,
N. K.
,
2013
, “
Causes of Failure and Repairing Options for Dies and Molds: A Review
,”
Eng. Fail. Anal.
,
34
, pp.
519
535
. 10.1016/j.engfailanal.2013.09.006
5.
Wang
,
J.
,
Prakash
,
S.
,
Joshi
,
Y.
, and
Liou
,
F.
,
2002
, “
Laser Aided Part Repair—A Review
,”
13th Annual Solid Freedom Fabrication Symposium
,
Austin, TX
,
Aug. 5–7
, pp.
57
64
.
6.
Mazumder
,
J.
,
2017
,
Laser-Aided Direct Metal Deposition of Metals and Alloys
,
Woodhead Publishing
,
Cambridge
, pp.
21
53
.
7.
Choi
,
J.
, and
Chang
,
Y.
,
2005
, “
Characteristics of Laser Aided Direct Metal/Material Deposition Process for Tool Steel
,”
Int. J. Mach. Tools Manuf.
,
45
(
4–5
), pp.
597
607
. 10.1016/j.ijmachtools.2004.08.014
8.
Hofman
,
J. T.
,
De Lange
,
D. F.
,
Pathiraj
,
B.
, and
Meijer
,
J.
,
2011
, “
FEM Modeling and Experimental Verification for Dilution Control in Laser Cladding
,”
J. Mater. Process. Technol.
,
211
(
2
), pp.
187
196
. 10.1016/j.jmatprotec.2010.09.007
9.
Masoomi
,
M.
,
Thompson
,
S. M.
, and
Shamsaei
,
N.
,
2017
, “
Laser Powder Bed Fusion of Ti-6Al-4V Parts: Thermal Modeling and Mechanical Implications
,”
Int. J. Mach. Tools Manuf.
,
118–119
, pp.
73
90
. 10.1016/j.ijmachtools.2017.04.007
10.
Ghosh
,
S.
, and
Choi
,
J.
,
2005
, “
Three-Dimensional Transient Finite Element Analysis for Residual Stresses in the Laser Aided Direct Metal/Material Deposition Process
,”
J. Laser Appl.
,
17
(
3
), pp.
144
158
. 10.2351/1.1961688
11.
Jayanath
,
S.
, and
Achuthan
,
A.
,
2018
, “
A Computationally Efficient Finite Element Framework to Simulate Additive Manufacturing Processes
,”
ASME J. Manuf. Sci. Eng.
,
140
(
4
), p.
041009
. 10.1115/1.4039092
12.
Nikam
,
S. H.
, and
Jain
,
N. K.
,
2019
, “
Modeling and Prediction of Residual Stresses in Additive Layer Manufacturing by Microplasma Transferred Arc Process Using Finite Element Simulation
,”
ASME J. Manuf. Sci. Eng.
,
141
(
6
), p.
061003
. 10.1115/1.4043264
13.
Bass
,
L.
,
Milner
,
J.
,
Gnäupel-Herold
,
T.
, and
Moylan
,
S.
,
2018
, “
Residual Stress in Additive Manufactured Nickel Alloy 625 Parts
,”
ASME J. Manuf. Sci. Eng.
,
140
(
6
), p.
061004
. 10.1115/1.4039063
14.
Bailey
,
N. S.
,
Tan
,
W.
, and
Shin
,
Y. C.
,
2009
, “
Predictive Modeling and Experimental Results for Residual Stresses in Laser Hardening of AISI 4140 Steel by a High Power Diode Laser
,”
Surf. Coat. Technol.
,
203
(
14
), pp.
2003
2012
. 10.1016/j.surfcoat.2009.01.039
15.
Paul
,
S.
,
Singh
,
R.
,
Yan
,
W.
,
Samajdar
,
I.
,
Paradowska
,
A.
,
Thool
,
K.
, and
Reid
,
M.
,
2018
, “
Critical Deposition Height for Sustainable Restoration via Laser Additive Manufacturing
,”
Sci. Rep.
,
8
(
1
), p.
14726
. 10.1038/s41598-018-32842-z
16.
Wang
,
X.
,
Hu
,
L.
,
Xu
,
Q.
,
Chen
,
D. X.
, and
Sun
,
S. T.
,
2017
, “
Influence of Martensitic Transformation on Welding Residual Stress in Plates and Pipes
,”
Sci. Technol. Weld. Joining
,
22
(
6
), pp.
505
511
. 10.1080/13621718.2016.1263711
17.
Baykasoglu
,
C.
,
Akyildiz
,
O.
,
Candemir
,
D.
,
Yang
,
Q.
, and
To
,
A. C.
,
2018
, “
Predicting Microstructure Evolution During Directed Energy Deposition Additive Manufacturing of Ti-6Al-4V
,”
ASME J. Manuf. Sci. Eng.
,
140
(
5
), p.
051003
. 10.1115/1.4038894
18.
Chew
,
Y.
,
Pang
,
J. H. L.
,
Bi
,
G.
, and
Song
,
B.
,
2015
, “
Thermo-Mechanical Model for Simulating Laser Cladding Induced Residual Stresses With Single and Multiple Clad Beads
,”
J. Mater. Process. Technol.
,
224
, pp.
89
101
. 10.1016/j.jmatprotec.2015.04.031
19.
Ghosh
,
S.
, and
Choi
,
J.
,
2006
, “
Modeling and Experimental Verification of Transient/Residual Stresses and Microstructure Formation in Multi-Layer Laser Aided DMD Process
,”
ASME J. Heat Transfer
,
128
(
7
), p.
662
679
. 10.1115/1.2194037
20.
Fallah
,
V.
,
Corbin
,
S. F.
, and
Khajepour
,
A.
,
2010
, “
Solidification Behaviour and Phase Formation During Pre-Placed Laser Cladding of Ti45Nb on Mild Steel
,”
Surf. Coat. Technol.
,
204
(
15
), pp.
2400
2409
. 10.1016/j.surfcoat.2010.01.010
21.
Chandra
,
S.
, and
Rao
,
B. C.
,
2017
, “
A Study of Process Parameters on Workpiece Anisotropy in the Laser Engineered net Shaping (LENSTM) Process
,”
J. Phys. D: Appl. Phys.
,
50
(
22
), p.
225303
. 10.1088/1361-6463/aa6d3b
22.
Katinas
,
C.
,
Liu
,
S.
, and
Shin
,
Y. C.
,
2019
, “
Self-Sufficient Modeling of Single Track Deposition of Ti-6Al-4V With the Prediction of Capture Efficiency
,”
ASME J. Manuf. Sci. Eng.
,
141
(
1
), p.
011001
. 10.1115/1.4041423
23.
Piekarska
,
W.
,
Kubiak
,
M.
,
Saternus
,
Z.
, and
Rek
,
K.
,
2013
, “
Computer Modelling of Thermomechanical Phenomena in Pipes Welded Using a Laser Beam
,”
Arch. Metall. Mater.
,
58
(
4
), pp.
1237
1242
. 10.2478/amm-2013-0156
24.
Kromm
,
A.
,
Kannengiesser
,
T.
,
Altenkirch
,
J.
, and
Gibmeier
,
J.
,
2011
, “
Residual Stresses in Multilayer Welds With Different Martensitic Transformation Temperatures Analyzed by High-Energy Synchrotron Diffraction
,”
Mater. Sci. Forum
,
681
, pp.
37
42
. 10.4028/www.scientific.net/MSF.681.37
25.
Wang
,
H.
,
Woo
,
W.
,
Kim
,
D. K.
,
Em
,
V.
, and
Lee
,
S. Y.
,
2018
, “
Effect of Chemical Dilution and the Number of Weld Layers on Residual Stresses in a Multi-Pass low-Transformation-Temperature Weld
,”
Mater. Des.
,
160
, pp.
384
394
. 10.1016/j.matdes.2018.09.016
26.
Deng
,
D.
,
2009
, “
FEM Prediction of Welding Residual Stress and Distortion in Carbon Steel Considering Phase Transformation Effects
,”
Mater. Des.
,
30
(
2
), pp.
359
366
. 10.1016/j.matdes.2008.04.052
27.
Li
,
W. B.
,
Easterling
,
K. E.
, and
Ashby
,
M. F.
,
1986
, “
Laser Transformation Hardening of Steel-II. Hypereutectoid Steels
,”
Acta Metall.
,
34
(
8
), pp.
1533
1543
. 10.1016/0001-6160(86)90098-2
28.
A.
Suárez Díaz
,
2011
,
Thermomechanical and Metallurgical Modeling of Láser Hardening and Láser Cladding Processes
.
29.
Zhang
,
W.
,
Wang
,
X.
,
Hu
,
Y.
, and
Siyang
,
W.
,
2018
, “
Predictive Modelling of Microstructure Changes, Micro-Hardness and Residual Stress in Machining of 304 Austenitic Stainless Steel
,”
Int. J. Mach. Tools Manuf.
,
130–131
, pp.
36
48
. https://doi.org/10.1016/j.ijmachtools.2018.03.008
30.
Ramesh
,
A.
, and
Melkote
,
S. N.
,
2008
, “
Modeling of White Layer Formation Under Thermally Dominant Conditions in Orthogonal Machining of Hardened AISI 52100 Steel
,”
Int. J. Mach. Tools Manuf.
,
48
(
3–4
), pp.
402
414
. 10.1016/j.ijmachtools.2007.09.007
31.
Kattire
,
P.
,
Paul
,
S.
,
Singh
,
R.
, and
Yan
,
W.
,
2015
, “
Experimental Characterization of Laser Cladding of CPM 9 V on H13 Tool Steel for die Repair Applications
,”
J. Manuf. Processes
,
20
, pp.
492
499
. 10.1016/j.jmapro.2015.06.018
32.
Xue
,
L.
,
Chen
,
J.
, and
Wang
,
S.-H.
,
2013
, “
Freeform Laser Consolidated H13 and CPM 9 V Tool Steels
,”
Metallogr., Microstruct., Anal.
,
2
(
2
), pp.
67
78
. 10.1007/s13632-013-0061-0
33.
J.
Chen
,
L.
Xue
,
Laser Cladding of High-Performance Cpm Tool Steels on Hardened H13 Hot-Work Tool Steel for Automotive Tooling Applications
,
1
(
2012
)
11
18
.
34.
Wang
,
S. H.
,
Chen
,
J. Y.
, and
Xue
,
L.
,
2006
, “
A Study of the Abrasive Wear Behaviour of Laser-Clad Tool Steel Coatings
,”
Surf. Coat. Technol.
,
200
(
11
), pp.
3446
3458
. 10.1016/j.surfcoat.2004.10.125
35.
Leunda
,
J.
,
Soriano
,
C.
,
Sanz
,
C.
, and
Navas
,
V. G.
,
2011
, “
Laser Cladding of Vanadium-Carbide Tool Steels for die Repair
,”
Phys. Procedia.
,
12
(
Part A
), pp.
345
352
. 10.1016/j.phpro.2011.03.044
36.
Paul
,
S.
,
Singh
,
R.
, and
Yan
,
W.
,
2015
,
Lasers Based Manufacturing
,
Springer
,
New Delhi
.
37.
Paul
,
S.
,
Singh
,
R.
, and
Yan
,
W.
,
2016
, “
Thermal Model for Additive Restoration of Mold Steels Using Crucible Steel
,”
J. Manuf. Processes
,
24
, pp.
346
354
. 10.1016/j.jmapro.2016.06.012
38.
Paul
,
S.
,
Thool
,
K.
,
Singh
,
R.
,
Samajdar
,
I.
, and
Yan
,
W.
,
2017
, “
Experimental Characterization of Clad Microstructure and Its Correlation With Residual Stresses
,”
Procedia Manuf.
,
10
, pp.
804
818
. 10.1016/j.promfg.2017.07.081
39.
Costa
,
L.
,
Vilar
,
R.
,
Reti
,
T.
, and
Deus
,
A. M.
,
2005
, “
Rapid Tooling by Laser Powder Deposition: Process Simulation Using Finite Element Analysis
,”
Acta Mater.
,
53
(
14
), pp.
3987
3999
. 10.1016/j.actamat.2005.05.003
40.
Paul
,
C. P.
,
Mishra
,
S. K.
,
Kumar
,
A.
, and
Kukreja
,
L. M.
,
2013
, “
Laser Rapid Manufacturing on Vertical Surfaces: Analytical and Experimental Studies
,”
Surf. Coat. Technol.
,
224
, pp.
18
28
. 10.1016/j.surfcoat.2013.02.044
41.
Pinkerton
,
A. J.
, and
Li
,
L.
,
2004
, “
Modelling Powder Concentration Distribution From a Coaxial Deposition Nozzle for Laser-Based Rapid Tooling
,”
ASME J. Manuf. Sci. Eng.
,
126
(
1
), pp.
33
41
. 10.1115/1.1643748
42.
Incropera
,
F. P.
,
DeWitt
,
D. P.
,
Bergman
,
T. L.
, and
Lavine
,
A. S.
,
2007
,
Fundamentals of Heat and Mass Transfer
,
Wiley
,
New York
.
43.
Mazur
,
J.
,
1950
, “
Lattice Parameters of Martensite and of Austenite
,”
Nature
,
166
(
4228
), p.
828
. 10.1038/166828a0
44.
Pan
,
H. H.
, and
Weng
,
G. J.
,
1992
, “
Thermal Stress and Volume Change During a Cooling Process Involving Phase Transformation
,”
J. Therm. Stresses
,
15
(
1
), pp.
1
23
. 10.1080/01495739208946117
45.
Koistinen
,
D. P.
, and
Marburger
,
R. E.
,
1959
, “
A General Equation Prescribing the Extent of the Austenite-Martensite Transformation in Pure Iron-Carbon Alloys and Plain Carbon Steels
,”
Acta Metall.
,
7
(
1
), pp.
59
60
. 10.1016/0001-6160(59)90170-1
46.
Payares-Asprino
,
M.
,
Katsumoto
,
H.
, and
Liu
,
S.
,
2008
, “
Effect of Martensite Start and Finish Temperature on Residual Stress Development in Structural Steel Welds
,”
Weld. J. Res.
, pp.
279
290
.
47.
Moyer
,
J. M.
, and
Ansell
,
G. S.
,
1975
, “
The Volume Expansion Accompanying the Martensite Transformation in Iron-Carbon Alloys
,”
Metall. Trans. A.
,
6
(
9
), pp.
1785
1791
. 10.1007/BF02642308
48.
Inoue
,
T.
,
2008
, “
Phenomenological Mechanism of Transformation Plasticity and the Constitutive Law Coupled With Thermomechanical Plasticity
,”
Adv. Mater. Res.
,
33
, pp.
1351
1358
. 10.4028/www.scientific.net/AMR.33-37.1351
49.
Leblond
,
J. B.
,
Devaux
,
J.
, and
Devaux
,
J. C.
,
1989
, “
Mathematical Modelling of Transformation Plasticity in Steels I: Case of Ideal-Plastic Phases
,”
Int. J. Plast.
,
5
(
6
), pp.
551
572
. 10.1016/0749-6419(89)90001-6
50.
Dunne
,
F.
, and
Petrinic
,
N.
,
2006
,
Introduction to Computational Plasticity
,
Oxford University Press
,
Oxford
.
You do not currently have access to this content.