Abstract

Drilling with modulation-assisted machining (MAM) superimposes a low-frequency oscillation onto the drill feed motion. The otherwise continuous cutting in the drilling process is converted into a series of discrete cutting events. The result is a discrete chip formation process and concurrent improvement in chip ejection. The discrete chip formation and ejection in drilling with MAM were investigated via systematic experiments in OFHC Cu and Ti6Al4V using a two-flute twist drill and a single-flute gun drill. Drilling thrust force and chip morphologies for various modulation conditions are examined. The continuous cutting and discrete cutting regimes of modulation-assisted drilling are compared with conditions determined by a kinematic model. The results show that chip formation in the continuous cutting regime with MAM can influence chip breakage by random fracture at thin sections of the chip, but in this regime the resulting chip size is variable and not controlled. In contrast, when MAM conditions operate in the regime of discrete cutting, the deformed chip size can be directly controlled. The ability to control the chip size improves chip ejection and drilling process stability. A set of modulation conditions for enhanced performance of chip ejection are proposed. The study shows that modulation-assisted machining offers distinct advantages as a method for deep-hole drilling applications.

References

References
1.
Shaw
,
M. C.
,
2005
,
Metal Cutting Principles
, 2nd ed.,
Oxford University Press
,
New York
.
2.
Sharif
,
S.
, and
Rahim
,
E.
,
2007
, “
Performance of Coated- and Uncoated-Carbide Tools When Drilling Titanium Alloy—Ti6Al4V
,”
J. Mater. Process. Technol.
,
185
(
1–3
), pp.
72
76
. 10.1016/j.jmatprotec.2006.03.142
3.
Zhang
,
P.
,
Churi
,
N.
,
Pei
,
Z. J.
, and
Treadwell
,
C.
,
2008
, “
Mechanical Drilling Processes for Titanium Alloys: A Literature Review
,”
Mach. Sci. Technol.
,
12
(
4
), pp.
417
444
. 10.1080/10910340802519379
4.
Biermann
,
D.
, and
Kirschner
,
M.
,
2015
, “
Experimental Investigations on Single-Lip Deep Hole Drilling of Superalloy Inconel 718 With Small Diameters
,”
J. Manuf. Processes
,
20
(
1
), pp.
332
339
. 10.1016/j.jmapro.2015.06.001
5.
Chen
,
Y.
, and
Liao
,
Y.
,
2003
, “
Study on Wear Mechanisms in Drilling of Inconel 718 Superalloy
,”
J. Mater. Process. Technol.
,
140
(
1–3
), pp.
269
273
. 10.1016/S0924-0136(03)00792-1
6.
Sultan
,
A.
,
Sharif
,
S.
, and
Kurniawan
,
D.
,
2015
, “
Chip Formation When Drilling AISI 316L Stainless Steel Using Carbide Twist Drill
,”
Procedia Manuf.
,
2
, pp.
224
229
. 10.1016/j.promfg.2015.07.039
7.
Han
,
C.
,
Luo
,
M.
,
Zhang
,
D.
, and
Wu
,
B.
,
2018
, “
Iterative Learning Method for Drilling Depth Optimization in Peck Deep-Hole Drilling
,”
ASME J. Manuf. Sci. Eng.
,
140
(
12
), p.
121009
. 10.1115/1.4041420
8.
Toews Iii
,
H.
,
Compton
,
W.
, and
Chandrasekar
,
S.
,
1998
, “
A Study of the Influence of Superimposed Low-Frequency Modulation on the Drilling Process
,”
Precis. Eng.
,
22
(
1
), pp.
1
9
. 10.1016/S0141-6359(97)00085-8
9.
Zhang
,
D.
, and
Wang
,
L.
,
1998
, “
Investigation of Chip in Vibration Drilling
,”
Int. J. Mach. Tools Manuf.
,
38
(
3
), pp.
165
176
. 10.1016/S0890-6955(97)00047-3
10.
Okamura
,
K.
,
Sasahara
,
H.
,
Segawa
,
T.
, and
Tsutsumi
,
M.
,
2006
, “
Low-Frequency Vibration Drilling of Titanium Alloy
,”
JSME Int. J. C-Mech. Syst. Mach. Elem. Manuf.
,
49
(
1
), pp.
76
82
. 10.1299/jsmec.49.76
11.
Mann
,
J.
,
Saldana
,
C.
,
Guo
,
Y.
,
Yeung
,
H.
,
Compton
,
W.
, and
Chandrasekar
,
S.
,
2013
, “
Effects of Controlled Modulation on Surface Textures in Deep-Hole Drilling
,”
SAE Int. J. Mater. Manuf.
,
6
(
1
), pp.
24
32
. 10.4271/2012-01-1868
12.
Sadek
,
A.
,
Attia
,
M.
,
Meshreki
,
M.
, and
Shi
,
B.
,
2013
, “
Characterization and Optimization of Vibration-Assisted Drilling of Fibre Reinforced Epoxy Laminates
,”
CIRP Ann.
,
62
(
1
), pp.
91
94
. 10.1016/j.cirp.2013.03.097
13.
Swan
,
S.
,
Bin Abdullah
,
M. S.
,
Kim
,
D.
,
Nguyen
,
D.
, and
Kwon
,
P.
,
2018
, “
Tool Wear of Advanced Coated Tools in Drilling of CFRP
,”
ASME J. Manuf. Sci. Eng.
,
140
(
11
), p.
111018
. 10.1115/1.4040916
14.
Pecat
,
O.
, and
Brinksmeier
,
E.
,
2014
, “
Tool Wear Analyses in Low Frequency Vibration Assisted Drilling of CFRP/Ti6Al4V Stack Material
,”
Procedia CIRP
,
14
, pp.
142
147
. 10.1016/j.procir.2014.03.050
15.
Mann
,
J.
,
Guo
,
Y.
,
Saldana
,
C.
,
Compton
,
W.
, and
Chandrasekar
,
S.
,
2011
, “
Enhancing Material Removal Processes Using Modulation-Assisted Machining
,”
Tribol. Int.
,
44
(
10
), pp.
1225
1235
. 10.1016/j.triboint.2011.05.023
16.
Neugebauer
,
R.
, and
Stoll
,
A.
,
2004
, “
Ultrasonic Application in Drilling
,”
J. Mater. Process. Technol.
,
149
(
1–3
), pp.
633
639
. 10.1016/j.jmatprotec.2003.10.062
17.
Azarhoushang
,
B.
, and
Akbari
,
J.
,
2007
, “
Ultrasonic-Assisted Drilling of Inconel 738-LC
,”
Int. J. Mach. Tools Manuf.
,
47
(
7–8
), pp.
1027
1033
. 10.1016/j.ijmachtools.2006.10.007
18.
Liao
,
Y.
,
Chen
,
Y.
, and
Lin
,
H.
,
2007
, “
Feasibility Study of the Ultrasonic Vibration Assisted Drilling of Inconel Superalloy
,”
Int. J. Mach. Tools Manuf.
,
47
(
12–13
), pp.
1988
1996
. 10.1016/j.ijmachtools.2007.02.001
19.
Pujana
,
J.
,
Rivero
,
A.
,
Celaya
,
A.
, and
De Lacalle
,
L. L.
,
2009
, “
Analysis of Ultrasonic-Assisted Drilling of Ti6Al4V
,”
Int. J. Mach. Tools Manuf.
,
49
(
6
), pp.
500
508
. 10.1016/j.ijmachtools.2008.12.014
20.
Paktinat
,
H.
, and
Amini
,
S.
,
2018
, “
Experiments and Finite Element Simulation of Ultrasonic Assisted Drilling
,”
ASME J. Manuf. Sci. Eng.
,
140
(
10
), p.
101002
. 10.1115/1.4040321
21.
Heisel
,
U.
,
Wallaschek
,
J.
,
Eisseler
,
R.
, and
Potthast
,
C.
,
2008
, “
Ultrasonic Deep Hole Drilling in Electrolytic Copper ecu 57
,”
CIRP Ann.
,
57
(
1
), pp.
53
56
. 10.1016/j.cirp.2008.03.078
22.
Guo
,
Y.
,
Lee
,
S. E.
, and
Mann
,
J. B.
,
2017
, “
Piezo-Actuated Modulation-Assisted Drilling System With Integrated Force Sensing
,”
ASME J. Manuf. Sci. Eng.
,
139
(
1
), p.
014501
. 10.1115/1.4033929
23.
Yeung
,
H.
,
Guo
,
Y.
,
Mann
,
J. B.
,
Compton
,
W. D.
, and
Chandrasekar
,
S.
,
2016
, “
Effect of Low-Frequency Modulation on Deformation and Material Flow in Cutting of Metals
,”
ASME J. Tribol.
,
138
(
1
), p.
012201
. 10.1115/1.4031140
You do not currently have access to this content.