Abstract

Compact tension specimens with prefabricated cracks are repaired by laser with micro/nano materials added at the crack tip. Different combinations of laser parameters, i.e., laser power, laser spot diameter and heating time, were applied to investigate their effects on the microstructures and fracture properties of repaired specimens. J-integrals were calculated according to the digital image correlation (DIC) measurements, and microstructures were examined using scanning electron microscopy (SEM). When suitable laser parameters were used, homogeneous and compact equiaxed grains with no cracks, pores, and agglomeration are observed in the repaired layer, and the J-integral of repaired specimens is approximately 20% less than that of unrepaired specimen. The paper reveals relations among laser parameters, J-integrals, and microstructures, and provides a guideline for the selection of laser repair parameters.

References

1.
Amado
,
J. M.
,
Tobar
,
M. J.
,
Yáñez
,
A.
,
Amigó
,
V.
, and
Candel
,
J. J.
,
2011
, “
Crack Free Tungsten Carbide Reinforced Ni(Cr) Layers Obtained by Laser Cladding
,”
Phys. Procedia
,
12
(
1
), pp.
338
344
. 10.1016/j.phpro.2011.03.043
2.
Xu
,
P.
,
Lin
,
C. X.
,
Zhou
,
C. Y.
, and
Yi
,
X. P.
,
2014
, “
Wear and Corrosion Resistance of Laser Cladding AISI 304 Stainless Steel/Al2O3 Composite Coatings
,”
Surf. Coat. Technol.
,
238
(
2
), pp.
9
14
. 10.1016/j.surfcoat.2013.10.028
3.
Quintino
,
L.
,
Costa
,
A.
,
Miranda
,
R.
,
Yapp
,
D.
,
Kumar
,
V.
, and
Kong
,
C. J.
,
2007
, “
Welding With High Power Fiber Lasers—A Preliminary Study
,”
Mater. Des.
,
28
(
4
), pp.
1231
1237
. 10.1016/j.matdes.2006.01.009
4.
Kawahito
,
Y.
,
Mizutani
,
M.
, and
Katayama
,
S.
,
2007
, “
Elucidation of High-Power Fibre Laser Welding Phenomena of Stainless Steel and Effect of Factors on Weld Geometry
,”
J. Phys. D: Appl. Phys.
,
40
(
19
), pp.
5854
5859
. 10.1088/0022-3727/40/19/009
5.
Montiel
,
H.
,
Xu
,
B.
, and
Li
,
J.
,
2019
, “
Selective Laser Melting of Mechanically Alloyed Metastable Al5Fe2 Powders
,”
ASME J. Manuf. Sci. Eng.
,
141
(
7
), p.
071008
. 10.1115/1.4043730
6.
Shrestha
,
S.
, and
Kevin Chou
,
Y.
,
2019
, “
A Numerical Study on the Keyhole Formation During Laser Powder Bed Fusion Process
,”
ASME J. Manuf. Sci. Eng.
,
141
(
10
), p.
101002
. 10.1115/1.4044100
7.
Mioković
,
T.
,
Schulze
,
V.
,
Lohe
,
D.
, and
Vohringer
,
O.
,
2005
, “
Influence of Heating Rate, Cooling Rate and Numbers of Pulses on the Microstructure of AISI 4140 After Short-Time-Hardening
,”
Int. J. Mater. Prod. Technol.
,
24
(
1–4
), pp.
207
223
. 10.1504/IJMPT.2005.007950
8.
Mioković
,
T.
,
Schulze
,
V.
,
Vöhringer
,
O.
, and
Löhe
,
D.
,
2006
, “
Prediction of Phase Transformations During Laser Surface Hardening of AISI 4140 Including the Effects of Inhomogeneous Austenite Formation
,”
Mater. Sci. Eng. A
,
435–436
(
4
), pp.
547
555
. 10.1016/j.msea.2006.07.037
9.
Mioković
,
T.
,
Schulze
,
V.
,
Vöhringer
,
O.
, and
Löhe
,
D.
,
2007
, “
Influence of Cyclic Temperature Changes on the Microstructure of AISI 4140 After Laser Surface Hardening
,”
Acta Mater.
,
55
(
2
), pp.
589
599
. 10.1016/j.actamat.2006.08.052
10.
Majumdar
,
J. D.
,
Rittinghaus
,
S. K.
,
Wissenbach
,
K.
,
Höche
,
D.
,
Blawert
,
C.
, and
Weisheit
,
A.
,
2018
, “
Direct Laser Cladding of the Silicide Dispersed Titanium Aluminide (Ti45Al5Nb0.5Si) Composites
,”
Opt. Laser Technol.
,
106
, pp.
182
190
. 10.1016/j.optlastec.2018.03.012
11.
Ning
,
F. D.
,
Hu
,
Y. B.
,
Liu
,
Z. C.
,
Wang
,
X. L.
,
Li
,
Y. Z.
, and
Cong
,
W. L.
,
2018
, “
Ultrasonic Vibration-Assisted Laser Engineered Net Shaping of Inconel 718 Parts: Microstructural and Mechanical Characterization
,”
ASME J. Manuf. Sci. Eng.
,
140
(
6
), p.
061012
. 10.1115/1.4039441
12.
Kaschel
,
F. R.
,
Celikin
,
M.
, and
Dowling
,
D. P.
,
2020
, “
Effects of Laser Power on Geometry, Microstructure and Mechanical Properties of Printed Ti-6Al-4V Parts
,”
J. Mater. Process. Technol.
,
278
, p.
116539
. 10.1016/j.jmatprotec.2019.116539
13.
Jiang
,
W.
, and
Jiang
,
X.
,
2017
, “
Laser Repair With Addition of Nano-WC on Microstructure and Fracture Behavior of 304 Stainless Steel
,”
ASME J. Eng. Mater. Technol.
,
139
(
4
), p.
041002
. 10.1115/1.4036586
14.
Li
,
Y. Y.
, and
Jiang
,
W.
,
2019
, “
DIC-Based J-Integral Evaluation of Laser Repaired Cracks With Micro/Nanomaterial Addition
,”
Fatigue Fract. Eng. Mater. Struct.
,
42
(
10
), pp.
2262
2275
. 10.1111/ffe.13040
15.
Cherepanov
,
G. P.
,
1967
, “
Crack Propagation in Continuous Media
,”
J. Appl. Math. Mech.
,
31
(
3
), pp.
503
512
. 10.1016/0021-8928(67)90034-2
16.
Rice
,
J. R.
,
1968
, “
A Path Independent Integral and Approximate Analysis of Strain Concentration by Notches and Cracks
,”
ASME J. Appl. Mech.
,
35
(
2
), pp.
379
386
. 10.1115/1.3601206
17.
Vukelic
,
G.
, and
Brnic
,
J.
,
2017
, “
Numerically Predicted J-Integral as a Measure of Crack Driving Force for Steels 1.7147 and 1.4762
,”
J. Theor. Appl. Mech.
,
55
(
2
), pp.
659
666
. 10.15632/jtam-pl.55.2.659
18.
Simha
,
N. K.
,
Fischer
,
F. D.
,
Shan
,
G. X.
,
Chen
,
C. R.
, and
Kolednik
,
O.
,
2008
, “
J-Integral and Crack Driving Force in Elastic-Plastic Materials
,”
J. Mech. Phys. Solids
,
56
(
9
), pp.
2876
2895
. 10.1016/j.jmps.2008.04.003
19.
Kráčalík
,
M.
,
Daves
,
W.
, and
Antretter
,
T.
,
2016
, “
Calculation of Crack Driving Forces of Surface Cracks Subjected to Rolling/Sliding Contact
,”
Eng. Fract. Mech.
,
152
, pp.
10
25
. 10.1016/j.engfracmech.2015.12.003
20.
Fischer
,
F. D.
,
Kolednik
,
O.
,
Predan
,
J.
,
Razi
,
H.
, and
Fratzl
,
P.
,
2017
, “
Crack Driving Force in Twisted Plywood Structures
,”
Acta Biomater.
,
55
, pp.
349
359
. 10.1016/j.actbio.2017.04.007
21.
Hall
,
E. O.
,
2002
, “
The Deformation and Ageing of Mild Steel: III Discussion of Results
,”
Proc. Phys. Soc.
,
64
(
6
), p.
495
.
22.
Petch
,
N. J.
,
1953
, “
The Cleavage Strength of Polycrystals
,”
J. Iron Steel Inst.
,
174
(
1
), pp.
25
28
.
You do not currently have access to this content.