Abstract

This study presents a novel analysis of the machined subsurface layer formation dealing with strain hardening phenomenon which results from complex mechanisms due to cutting edge multiple passes in drilling. On the one hand, the hardened layer during drilling is characterized in relation with the local cutting geometry and thanks to a quick-stop device (QSD) to suddenly interrupt the operation. Micro hardness is used to determine the hardened thickness of the machined subsurface layers along the local cutting edge geometry. On the other hand, orthogonal cutting performed with a complex self-designed planing experiment is used to investigate in details the hardening accumulation aspects. Then, dedicated methodologies are proposed to quantify the strain hardening as well as the incremental plastic strain generated by consecutive tool passes. In addition to the subsurface hardness evolution, the work material strain is observed during the steady-state cutting process thanks to the high-speed camera. The digital image correlation technique is exploited to analyze not only the plastic strain remaining on the workpiece after the cut but also the effect of the incremental plastic strain generated by the consecutive planing passes as the cutting edges in drilling do. One of the outcomes is that the hardened layer thickness can reach from two to three times the cut thickness in drilling or in planing. As a consequence, this work demonstrates that the cutting process affects itself by hardening. Thus, the studied austenitic stainless steel in such a way that this last is never cut in its initial state.

References

1.
Diniz
,
A. E.
,
Machado
,
Á. R
, and
Corrêa
,
J. G.
,
2016
, “
Tool Wear Mechanisms in the Machining of Steels and Stainless Steels
,”
Int. J. Adv. Manuf. Technol.
,
87
(
9–12
), pp.
3157
3168
. 10.1007/s00170-016-8704-3
2.
Routio
,
M.
, and
Säynätjoki
,
M.
,
1995
, “
Tool Wear and Failure in the Drilling of Stainless Steel
,”
J. Mater. Process. Technol.
,
52
(
1
), pp.
35
43
. 10.1016/0924-0136(94)01441-3
3.
Sultan
,
A. Z.
,
Sharif
,
S.
, and
Kurniawan
,
D.
,
2015
, “
Effect of Machining Parameters on Tool Wear and Hole Quality of AISI 316L Stainless Steel in Conventional Drilling
,”
Procedia Manuf.
,
2
, pp.
202
207
. 10.1016/j.promfg.2015.07.035
4.
Dolinšek
,
S.
,
2003
, “
Work-Hardening in the Drilling of Austenitic Stainless Steels
,”
J. Mater. Process. Technol.
,
133
(
1–2
), pp.
63
70
. 10.1016/S0924-0136(02)00245-5
5.
Jiang
,
L.
,
Roos
,
Å
, and
Liu
,
P.
,
1997
, “
The Influence of Austenite Grain Size and Its Distribution on Chip Deformation and Tool Life During Machining of AISI 304L
,”
Metall. Mater. Trans. A
,
28
(
11
), pp.
2415
2422
. 10.1007/s11661-997-0198-z
6.
Krolczyk
,
G.
,
Legutko
,
S.
, and
Stoić
,
A.
,
2013
, “
Influence of Cutting Parameters and Conditions Onto Surface Hardness of Duplex Stainless Steel After Turning Process
,”
Teh. Vjesn.
,
20
(
6
), pp.
1077
1080
.
7.
Chern
,
G.-L.
,
2005
, “
Development of a New and Simple Quick-Stop Device for the Study on Chip Formation
,”
Int. J. Mach. Tools Manuf.
,
45
(
7
), pp.
789
794
. 10.1016/j.ijmachtools.2004.11.013
8.
Ozturk
,
S.
, and
Altan
,
E.
,
2012
, “
Design of a Computer Aided Quick-Stop Device for Study of Dead Metal Zone Formation
,”
J. Braz. Soc. Mech. Sci. Eng.
,
34
(
4
), pp.
501
505
. 10.1590/S1678-58782012000400011
9.
Davis
,
B.
,
Dabrow
,
D.
,
Ifju
,
P.
,
Xiao
,
G.
,
Liang
,
S. Y.
, and
Huang
,
Y.
,
2018
, “
Study of the Shear Strain and Shear Strain Rate Progression During Titanium Machining
,”
ASME J. Manuf. Sci. Eng.
,
140
(
5
), p.
051007
. 10.1115/1.4038891
10.
Zhang
,
D.
,
Zhang
,
X.-M.
, and
Ding
,
H.
,
2018
, “
Hybrid Digital Image Correlation–Finite Element Modeling Approach for Modeling of Orthogonal Cutting Process
,”
ASME J. Manuf. Sci. Eng.
,
140
(
4
), p.
041018
. 10.1115/1.4038998
11.
Baizeau
,
T.
,
Rossi
,
F.
,
Poulachon
,
G.
, and
Outeiro
,
J. C.
,
2016
, “
Prediction of Surface Integrity Using Flamant–Boussinesq Analytical Model
,”
CIRP Ann.
,
65
(
1
), pp.
81
84
. 10.1016/j.cirp.2016.04.043
12.
Baizeau
,
T.
,
Campocasso
,
S.
,
Fromentin
,
G.
,
Rossi
,
F.
, and
Poulachon
,
G.
,
2015
, “
Effect of Rake Angle on Strain Field During Orthogonal Cutting of Hardened Steel With c-BN Tools
,”
Procedia CIRP
,
31
, pp.
166
171
. 10.1016/j.procir.2015.03.089
13.
Baizeau
,
T.
,
Campocasso
,
S.
,
Rossi
,
F.
,
Poulachon
,
G.
, and
Hild
,
F.
,
2016
, “
Cutting Force Sensor Based on Digital Image Correlation for Segmented Chip Formation Analysis
,”
J. Mater. Process. Technol.
,
238
, pp.
466
473
. 10.1016/j.jmatprotec.2016.07.016
14.
Arif
,
R.
,
Fromentin
,
G.
,
Rossi
,
F.
, and
Marcon
,
B.
,
2019
, “
Mechanical Analysis of Local Cutting Forces and Transient State When Drilling of Heat-Resistant Austenitic Stainless Steel
,”
Int. J. Adv. Manuf. Technol.
,
104
, pp.
2247
2258
. 10.1007/s00170-019-03969-8
15.
Claudin
,
C.
,
2006
, “
Influence des Conditions Opératoires sur le Procédé de Perçage : Application aux Structures Mécano-Soudées en Acier bas Carbone
,”
Ph.D. thesis
,
ENSAM
,
Paris
.
16.
Davim
,
J. P.
,
2014
,
Machinability of Advanced Materials
,
John Wiley & Sons Incorporated
,
Hoboken, NJ
.
17.
Régnier
,
T.
,
Marcon
,
B.
,
Outeiro
,
J.
,
Fromentin
,
G.
,
D’Acunto
,
A.
, and
Crolet
,
A.
,
2019
, “
Investigations on Exit Burr Formation Mechanisms Based on Digital Image Correlation and Numerical Modeling
,”
Mach. Sci. Technol.
,
23
(
6
), pp.
925
950
. 10.1080/10910344.2019.1636274
18.
M’Saoubi
,
R.
, and
Chandrasekaran
,
H.
,
2004
, “
Role of Phase and Grain Size on Chip Formation and Material Work Hardening During Machining of Single and Dual Phase Steels
,”
Ironmaking Steelmaking
,
31
(
3
), pp.
258
264
. 10.1179/030192304225012141
19.
Merchant
,
M. E.
,
1945
, “
Mechanics of the Metal Cutting Process. I. Orthogonal Cutting and a Type 2 Chip
,”
J. Appl. Phys.
,
16
(
5
), pp.
267
275
. 10.1063/1.1707586
20.
Astakhov
,
V. P.
, and
Shvets
,
S.
,
2004
, “
The Assessment of Plastic Deformation in Metal Cutting
,”
J. Mater. Process. Technol.
,
146
(
2
), pp.
193
202
. 10.1016/j.jmatprotec.2003.10.015
21.
Dupré
,
J.-C.
,
Bornert
,
M.
,
Robert
,
L.
, and
Wattrisse
,
B.
,
2010
, “
Digital Image Correlation: Displacement Accuracy Estimation
,”
EPJ Web Conf
,
6
, p.
31006
. 10.1051/epjconf/20100631006
22.
Hild
,
F.
, and
Roux
,
S.
,
2006
, “
Digital Image Correlation: From Displacement Measurement to Identification of Elastic Properties—A Review
,”
Strain
,
42
(
2
), pp.
69
80
. 10.1111/j.1475-1305.2006.00258.x
23.
Roux
,
S.
,
Hild
,
F.
, and
Berthaud
,
Y.
,
2002
, “
Correlation Image Velocimetry: A Spectral Approach
,”
Appl. Opt.
,
41
(
1
), pp.
108
115
. 10.1364/AO.41.000108
24.
Outeiro
,
J.
,
Campocasso
,
S.
,
Denguir
,
L.
,
Fromentin
,
G.
,
Vignal
,
V.
, and
Poulachon
,
G.
,
2015
, “
Experimental and Numerical Assessment of Subsurface Plastic Deformation Induced by OFHC Copper Machining
,”
CIRP Ann.
,
64
(
1
), pp.
53
56
. 10.1016/j.cirp.2015.04.080
25.
Besnard
,
G.
,
Hild
,
F.
, and
Roux
,
S.
,
2006
, “
‘Finite-Element’ Displacement Fields Analysis From Digital Images: Application to Portevin–Le Châtelier Bands
,”
Exp. Mech.
,
46
(
6
), pp.
789
803
. 10.1007/s11340-006-9824-8
26.
Pavlina
,
E. J.
, and
Van Tyne
,
C. J.
,
2008
, “
Correlation of Yield Strength and Tensile Strength With Hardness for Steels
,”
J. Mater. Eng. Perform.
,
17
(
6
), pp.
888
893
. 10.1007/s11665-008-9225-5
You do not currently have access to this content.