Abstract

To strengthen the metal components by selective laser melting (SLM), adding reinforcement particles and applying post treatments are generally regarded as the two effective means. However, how post heat treatment affects the properties of nano particulate reinforced metal composites obtained by laser additive manufacturing (AM) processes has rarely been studied. In this study, Inconel 718 matrix composite reinforced by 0.5 wt% nano TiC particles was prepared using SLM. To evaluate the effect of the heat treatment routines on the performance of the SLM-produced composite, two levels of solution temperature (980 and 1100 °C) were designed, and the solution treatment was followed by a standard two-step aging (720 °C for 8 h and 620 °C for 8 h). Scanning electron microscopy (SEM) and electron backscatter diffraction (EBSD) observations were performed to examine the microstructure, and transmission electron microscopy (TEM) observation was conducted to characterize the morphologies of incorporated nano particles and precipitated phases. Tensile tests were conducted to evaluate the mechanical properties of the formed composites. It was found that nano particles can effectively strengthen the metal matrix under both as-built and heat-treated conditions, and the material undergoes static recrystallization during the post heat treatment. Also, it was discovered that nano TiC particles play an important role in refining the microstructure of Inconel 718 composite below 980 °C. The maximum tensile strength of 1370 MPa was observed under 980 °C + aging condition, representing a 16% increase as compared with the unreinforced Inconel 718.

References

References
1.
Baykasoglu
,
C.
,
Akyildiz
,
O.
,
Candemir
,
D.
,
Yang
,
Q.
, and
To
,
A. C.
,
2018
, “
Predicting Microstructure Evolution During Directed Energy Deposition Additive Manufacturing of Ti-6Al-4V
,”
ASME J. Manuf. Sci. Eng.
,
140
(
5
), p.
051003
. 10.1115/1.4038894
2.
Mercelis
,
P.
, and
Kruth
,
J.-P.
,
2006
, “
Residual Stresses in Selective Laser Sintering and Selective Laser Melting
,”
Rapid Prototyp. J.
,
12
(
5
), pp.
254
265
. 10.1108/13552540610707013
3.
Taheri
,
H.
,
Koester
,
L. W.
,
Bigelow
,
T. A.
,
Faierson
,
E. J.
, and
Bond
,
L. J.
,
2019
, “
In Situ Additive Manufacturing Process Monitoring With an Acoustic Technique: Clustering Performance Evaluation Using K-Means Algorithm
,”
ASME J. Manuf. Sci. Eng.
,
141
(
4
), p.
041011
. 10.1115/1.4042786
4.
Çam
,
G.
, and
Koçak
,
M.
,
1998
, “
Progress in Joining of Advanced Materials
,”
Int. Mater. Rev.
,
43
(
1
), pp.
1
44
. 10.1179/imr.1998.43.1.1
5.
Slama
,
C.
,
Servant
,
C.
, and
Cizeron
,
G.
,
1997
, “
Aging of the Inconel 718 Alloy Between 500 and 750 C
,”
J. Mater. Res.
,
12
(
9
), pp.
2298
2316
. 10.1557/JMR.1997.0306
6.
Donachie
,
M. J.
, and
Donachie
,
S. J.
,
2002
,
Superalloys: A Technical Guide
,
ASM International
,
Oxford, UK
.
7.
Young
,
D. J.
,
2008
,
High Temperature Oxidation and Corrosion of Metals
,
Elsevier
,
New York
.
8.
Augspurger
,
T.
,
Bergs
,
T.
, and
Döbbeler
,
B.
,
2019
, “
Measurement and Modeling of Heat Partitions and Temperature Fields in the Workpiece for Cutting Inconel 718, AISI 1045, Ti6Al4 V, and AlMgSi0.5
,”
ASME J. Manuf. Sci. Eng.
,
141
(
6
), p.
061007
. 10.1115/1.4043311
9.
Hua
,
Y.
,
Liu
,
Z.
,
Wang
,
B.
, and
Jiang
,
J.
,
2019
, “
Residual Stress Regenerated on Low Plasticity Burnished Inconel 718 Surface After Initial Turning Process
,”
ASME J. Manuf. Sci. Eng.
,
141
(
12
), p.
121004
. 10.1115/1.4045060
10.
Cooper
,
D. E.
,
Blundell
,
N.
,
Maggs
,
S.
, and
Gibbons
,
G. J.
,
2013
, “
Additive Layer Manufacture of Inconel 625 Metal Matrix Composites, Reinforcement Material Evaluation
,”
J. Mater. Process. Technol.
,
213
(
12
), pp.
2191
2200
. 10.1016/j.jmatprotec.2013.06.021
11.
Bi
,
G.
,
Sun
,
C. N.
,
Nai
,
M. L.
, and
Wei
,
J.
,
2013
, “
Micro-Structure and Mechanical Properties of Nano-TiC Reinforced Inconel 625 Deposited Using LAAM
,”
Phys. Procedia
,
41
, pp.
828
834
. 10.1016/j.phpro.2013.03.155
12.
Hong
,
C.
,
Gu
,
D.
,
Dai
,
D.
,
Cao
,
S.
,
Alkhayat
,
M.
,
Jia
,
Q.
,
Gasser
,
A.
,
Weisheit
,
A.
,
Kelbassa
,
I.
, and
Zhong
,
M.
,
2015
, “
High-Temperature Oxidation Performance and Its Mechanism of TiC/Inconel 625 Composites Prepared by Laser Metal Deposition Additive Manufacturing
,”
J. Laser Appl.
,
27
(
S1
), p.
S17005
. 10.2351/1.4898647
13.
Gu
,
D.
,
Hong
,
C.
,
Jia
,
Q.
,
Dai
,
D.
,
Gasser
,
A.
,
Weisheit
,
A.
,
Kelbassa
,
I.
,
Zhong
,
M.
, and
Poprawe
,
R.
,
2013
, “
Combined Strengthening of Multi-Phase and Graded Interface in Laser Additive Manufactured TiC/Inconel 718 Composites
,”
J. Phys. D. Appl. Phys.
,
47
(
4
), p.
45309
. 10.1088/0022-3727/47/4/045309
14.
Jia
,
Q.
, and
Gu
,
D.
,
2014
, “
Selective Laser Melting Additive Manufacturing of TiC/Inconel 718 Bulk-Form Nanocomposites: Densification, Microstructure, and Performance
,”
J. Mater. Res.
,
29
(
17
), pp.
1960
1969
. 10.1557/jmr.2014.130
15.
Shi
,
Q.
,
Gu
,
D.
,
Lin
,
K.
,
Chen
,
W.
,
Xia
,
M.
, and
Dai
,
D.
,
2018
, “
The Role of Reinforcing Particle Size in Tailoring Interfacial Microstructure and Wear Performance of Selective Laser Melting WC/Inconel 718 Composites
,”
ASME J. Manuf. Sci. Eng.
,
140
(
11
), p.
111019
. 10.1115/1.4040544
16.
Brandl
,
E.
, and
Greitemeier
,
D.
,
2012
, “
Microstructure of Additive Layer Manufactured Ti–6Al–4V After Exceptional Post Heat Treatments
,”
Mater. Lett.
,
81
, pp.
84
87
. 10.1016/j.matlet.2012.04.116
17.
Sarkar
,
S.
,
Kumar
,
C. S.
, and
Nath
,
A. K.
,
2017
, “
Effect of Different Heat Treatments on Mechanical Properties of Laser Sintered Additive Manufactured Parts
,”
ASME J. Manuf. Sci. Eng.
,
139
(
11
), p.
111010
. 10.1115/1.4037437
18.
Turker
,
M.
,
Godlinski
,
D.
, and
Petzoldt
,
F.
,
2008
, “
Effect of Production Parameters on the Properties of IN 718 Superalloy by Three-Dimensional Printing
,”
Mater. Charact.
,
59
(
12
), pp.
1728
1735
. 10.1016/j.matchar.2008.03.017
19.
Xie
,
F.
,
He
,
X.
,
Cao
,
S.
, and
Qu
,
X.
,
2013
, “
Structural and Mechanical Characteristics of Porous 316L Stainless Steel Fabricated by Indirect Selective Laser Sintering
,”
J. Mater. Process. Technol.
,
213
(
6
), pp.
838
843
. 10.1016/j.jmatprotec.2012.12.014
20.
Shiomi
,
M.
,
Osakada
,
K.
,
Nakamura
,
K.
,
Yamashita
,
T.
, and
Abe
,
F.
,
2004
, “
Residual Stress Within Metallic Model Made by Selective Laser Melting Process
,”
CIRP Ann.
,
53
(
1
), pp.
195
198
. 10.1016/S0007-8506(07)60677-5
21.
Qi
,
H.
,
Azer
,
M.
, and
Ritter
,
A.
,
2009
, “
Studies of Standard Heat Treatment Effects on Microstructure and Mechanical Properties of Laser Net Shape Manufactured Inconel 718
,”
Metall. Mater. Trans. A
,
40
(
10
), pp.
2410
2422
. 10.1007/s11661-009-9949-3
22.
Standard
,
A.
,
2004
, “
E8. Standard Test Method for Tension Testing of Metallic Materials
,”
West Conshohocken ASTM
.
23.
OIM
,
O. I. M.
,
2005
, “
Analysis for Windows 5.0
,”
User Manual
,
TexSEM Lab Inc.
,
Utah
.
24.
Ning
,
F.
,
Hu
,
Y.
,
Liu
,
Z.
,
Wang
,
X.
,
Li
,
Y.
, and
Cong
,
W.
,
2018
, “
Ultrasonic Vibration-Assisted Laser Engineered Net Shaping of Inconel 718 Parts: Microstructural and Mechanical Characterization
,”
ASME J. Manuf. Sci. Eng.
,
140
(
6
), p.
061012
. 10.1115/1.4039441
25.
Zhao
,
X.
,
Chen
,
J.
,
Lin
,
X.
, and
Huang
,
W.
,
2008
, “
Study on Microstructure and Mechanical Properties of Laser Rapid Forming Inconel 718
,”
Mater. Sci. Eng. A
,
478
(
1–2
), pp.
119
124
. 10.1016/j.msea.2007.05.079
26.
Amano
,
R. S.
,
Marek
,
S.
,
Schultz
,
B. F.
, and
Rohatgi
,
P. K.
,
2014
, “
Laser Engineered Net Shaping Process for 316 l/15% Nickel Coated Titanium Carbide Metal Matrix Composite
,”
ASME J. Manuf. Sci. Eng.
,
136
(
5
), p.
051007
. 10.1115/1.4027758
27.
Kitagawa
,
T.
,
Kubo
,
A.
, and
Maekawa
,
K.
,
1997
, “
Temperature and Wear of Cutting Tools in High-Speed Machining of Inconel 718 and Ti-6Al-6V-2Sn
,”
Wear
,
202
(
2
), pp.
142
148
. 10.1016/S0043-1648(96)07255-9
28.
Wang
,
Y.
,
Shi
,
J.
,
Lu
,
S.
, and
Wang
,
Y.
,
2017
, “
Selective Laser Melting of Graphene-Reinforced Inconel 718 Superalloy: Evaluation of Microstructure and Tensile Performance
,”
ASME J. Manuf. Sci. Eng.
,
139
(
4
), p.
041005
. 10.1115/1.4034712
29.
Wilson
,
J. M.
, and
Shin
,
Y. C.
,
2012
, “
Microstructure and Wear Properties of Laser-Deposited Functionally Graded Inconel 690 Reinforced with TiC
,”
Surf. Coatings Technol.
,
207
, pp.
517
522
. 10.1016/j.surfcoat.2012.07.058
30.
Xu
,
Z.
,
Ouyang
,
W.
,
Jia
,
S.
,
Jiao
,
J.
,
Zhang
,
M.
, and
Zhang
,
W.
,
2020
, “
Cracks Repairing by Using Laser Additive and Subtractive Hybrid Manufacturing Technology
,”
ASME J. Manuf. Sci. Eng.
,
142
(
3
), p.
031006
. 10.1115/1.4046161
31.
Radavich
,
J. F.
,
1989
, “
The Physical Metallurgy of Cast and Wrought Alloy 718
,”
Superalloy 718 – Metallurgy and Applications
, E. A. Loria, ed., The Minerals, Metals & Materials Society, pp.
102
109
.
32.
Lalvani
,
H. M.
, and
Brooks
,
J. W.
,
2016
, “
Hot Forging of IN718 With Solution-Treated and Delta-Containing Initial Microstructures
,”
Metallogr. Microstruct. Anal.
,
5
(
5
), pp.
392
401
. 10.1007/s13632-016-0299-4
33.
Jiang
,
D.
,
Hong
,
C.
,
Zhong
,
M.
,
Alkhayat
,
M.
,
Weisheit
,
A.
,
Gasser
,
A.
,
Zhang
,
H.
,
Kelbassa
,
I.
, and
Poprawe
,
R.
,
2014
, “
Fabrication of Nano-TiCp Reinforced Inconel 625 Composite Coatings by Partial Dissolution of Micro-TiCp Through Laser Cladding Energy Input Control
,”
Surf. Coatings Technol.
,
249
, pp.
125
131
. 10.1016/j.surfcoat.2014.03.057
34.
Wang
,
Z.
,
Guan
,
K.
,
Gao
,
M.
,
Li
,
X.
,
Chen
,
X.
, and
Zeng
,
X.
,
2012
, “
The Microstructure and Mechanical Properties of Deposited-IN718 by Selective Laser Melting
,”
J. Alloys Compd.
,
513
, pp.
518
523
. 10.1016/j.jallcom.2011.10.107
35.
Ram
,
G. D. J.
,
Reddy
,
A. V.
,
Rao
,
K. P.
,
Reddy
,
G. M.
, and
Sundar
,
J. K. S.
,
2005
, “
Microstructure and Tensile Properties of Inconel 718 Pulsed Nd-YAG Laser Welds
,”
J. Mater. Process. Technol.
,
167
(
1
), pp.
73
82
. 10.1016/j.jmatprotec.2004.09.081
36.
Cao
,
J.
,
Liu
,
F.
,
Lin
,
X.
,
Huang
,
C.
,
Chen
,
J.
, and
Huang
,
W.
,
2013
, “
Effect of Overlap Rate on Recrystallization Behaviors of Laser Solid Formed Inconel 718 Superalloy
,”
Opt. Laser Technol.
,
45
, pp.
228
235
. 10.1016/j.optlastec.2012.06.043
37.
Desvallées
,
Y.
,
Bouzidi
,
M.
,
Bois
,
F.
, and
Beaude
,
N.
,
1994
, “
Delta Phase in Inconel 718: Mechanical Properties and Forging Process Requirements
,”
Superalloys
,
718
(
625
), pp.
281
291
. 10.7449/1994/Superalloys_1994_281_291
38.
Sundararaman
,
M.
,
Mukhopadhyay
,
P.
, and
Banerjee
,
S.
,
1988
, “
Precipitation of the δ-Ni 3 Nb Phase in Two Nickel Base Superalloys
,”
Metall. Trans. A
,
19
(
3
), pp.
453
465
. 10.1007/BF02649259
39.
Bass
,
L.
,
Milner
,
J.
,
Gnäupel-Herold
,
T.
, and
Moylan
,
S.
,
2018
, “
Residual Stress in Additive Manufactured Nickel Alloy 625 Parts
,”
ASME J. Manuf. Sci. Eng.
,
140
(
6
), p.
061004
. 10.1115/1.4039063
40.
Jin
,
Y.
,
Bernacki
,
M.
,
Agnoli
,
A.
,
Lin
,
B.
,
Rohrer
,
G. S.
,
Rollett
,
A. D.
, and
Bozzolo
,
N.
,
2016
, “
Evolution of the Annealing Twin Density During δ-Supersolvus Grain Growth in the Nickel-Based Superalloy InconelTM 718
,”
Metals
,
6
(
1
), p.
5
. 10.3390/met6010005
41.
Huang
,
K.
,
Marthinsen
,
K.
,
Zhao
,
Q.
, and
Logé
,
R. E.
,
2018
, “
The Double-Edge Effect of Second-Phase Particles on the Recrystallization Behaviour and Associated Mechanical Properties of Metallic Materials
,”
Prog. Mater. Sci.
,
92
, pp.
284
359
. 10.1016/j.pmatsci.2017.10.004
42.
Rohrer
,
G. S.
,
2010
, “
‘Introduction to Grains, Phases, and Interfaces—An Interpretation of Microstructure,’ Trans. AIME, 1948, Vol. 175, pp. 15–51, by C.S. Smith
,”
Metall. Mater. Trans. B
,
41
(
3
), pp.
457
494
. 10.1007/s11663-010-9364-6
43.
Awaji
,
H.
,
Nishimura
,
Y.
,
Choi
,
S.-M.
,
Takahashi
,
Y.
,
Goto
,
T.
, and
Hashimoto
,
S.
,
2009
, “
Toughening Mechanism and Frontal Process Zone Size of Ceramics
,”
J. Ceram. Soc. Japan
,
117
(
1365
), pp.
623
629
. 10.2109/jcersj2.117.623
44.
Voyiadjis
,
G.
,
2012
,
Advances in Damage Mechanics: Metals and Metal Matrix Composites
,
Elsevier
,
New York
.
45.
Mahmoudi
,
M.
,
Ezzat
,
A. A.
, and
Elwany
,
A.
,
2019
, “
Layerwise Anomaly Detection in Laser Powder-Bed Fusion Metal Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
141
(
3
), p.
031002
. 10.1115/1.4042108
46.
Nembach
,
E.
,
1997
,
Particle Strengthening of Metals and Alloys
,
John Wiley & Sons
,
New York
.
47.
Chang
,
L.
,
Sun
,
W.
,
Cui
,
Y.
,
Zhang
,
F.
, and
Yang
,
R.
,
2014
, “
Effect of Heat Treatment on Microstructure and Mechanical Properties of the Hot-Isostatic-Pressed Inconel 718 Powder Compact
,”
J. Alloys Compd.
,
590
, pp.
227
232
. 10.1016/j.jallcom.2013.12.107
48.
Wu
,
J.
,
Yuan
,
Y.
, and
Li
,
X.
,
2017
, “
Size Distribution Estimation of Three-Dimensional Particle Clusters in Metal-Matrix Nanocomposites Considering Sampling Bias
,”
ASME J. Manuf. Sci. Eng.
,
139
(
8
), p.
081017
. 10.1115/1.4036642
You do not currently have access to this content.