Abstract

In this paper, the printing of 3D functionally graded polymer/metal, polymer/ceramic composite components via an ultrasonic vibration-assisted laser-based multiple material powder bed fusion (PBF) is reported. Components consisted of various polymer composites with different compositions according to design was realized. High concentrations (up to 90%) of solid particle additives, including soda-lime glass, aluminum oxide, and copper powders, were mixed with the polymer and printed, which was difficult or impossible to realize using conventional injection molding or standard fused filament fabrication (FFF) 3D printing. Effects of laser melting/sintering parameters and manufacturing strategy of each type of polymeric composite were investigated. A successful delivery of very difficult-to-feed fine powder mixtures such as PA11/Al2O3 with irregular powder geometry via a new configuration of ultrasonic feeding was demonstrated. Three examples of 3D functionally graded components (part of a shoe sole, a turbine blade, and components of a ball bearing) were printed to illustrate the potential applications of the method.

References

References
1.
Huang
,
Y.
, and
Schmid
,
S. R.
,
2018
, “
Additive Manufacturing for Health: State of the Art, Gaps and Needs, and Recommendations
,”
ASME J. Manuf. Sci. Eng.
,
140
(
9
), p.
094001
. 10.1115/1.4040430
2.
Bhardwaj
,
A.
,
Jones
,
S. Z.
,
Kalantar
,
N.
,
Pei
,
Z.
,
Vickers
,
J.
,
Wangler
,
T.
,
Zavattieri
,
P.
, and
Zou
,
N.
,
2019
, “
Additive Manufacturing Processes for Infrastructure Construction: A Review
,”
ASME J. Manuf. Sci. Eng.
,
141
(
9
), p.
091010
. 10.1115/1.4044106
3.
Chueh
,
Y.-H.
,
Wei
,
C.
,
Zhang
,
X.
, and
Li
,
L.
,
2020
, “
Integrated Laser-Based Powder Bed Fusion and Fused Filament Fabrication for Three-Dimensional Printing of Hybrid Metal/Polymer Objects
,”
Addit. Manuf.
,
31
, p.
100928
. 10.1016/j.addma.2019.100928
4.
Wei
,
C.
,
Chueh
,
Y.-H.
,
Zhang
,
X.
,
Huang
,
Y.
,
Chen
,
Q.
, and
Li
,
L.
,
2019
, “
Easy-To-Remove Composite Support Material and Procedure in Additive Manufacturing of Metallic Components Using Multiple Material Laser-Based Powder Bed Fusion
,”
ASME J. Manuf. Sci. Eng.
,
141
(
7
), p.
071002
. 10.1115/1.4043536
5.
Ligon
,
S. C.
,
Liska
,
R.
,
Stampfl
,
J.
,
Gurr
,
M.
, and
Mülhaupt
,
R.
,
2017
, “
Polymers for 3D Printing and Customized Additive Manufacturing
,”
Chem. Rev.
,
117
(
15
), pp.
10212
10290
. 10.1021/acs.chemrev.7b00074
6.
Ngo
,
T. D.
,
Kashani
,
A.
,
Imbalzano
,
G.
,
Nguyen
,
K. T. Q.
, and
Hui
,
D.
,
2018
, “
Additive Manufacturing (3D Printing): A Review of Materials, Methods, Applications and Challenges
,”
Composites, Part B
,
143
, pp.
172
196
. 10.1016/j.compositesb.2018.02.012
7.
Chung
,
H.
, and
Das
,
S.
,
2006
, “
Processing and Properties of Glass Bead Particulate-Filled Functionally Graded Nylon-11 Composites Produced by Selective Laser Sintering
,”
Mater. Sci. Eng. A
,
437
(
2
), pp.
226
234
. 10.1016/j.msea.2006.07.112
8.
Chung
,
H.
, and
Das
,
S.
,
2008
, “
Functionally Graded Nylon-11/Silica Nanocomposites Produced by Selective Laser Sintering
,”
Mater. Sci. Eng. A
,
487
(
1
), pp.
251
257
. 10.1016/j.msea.2007.10.082
9.
Ryder
,
M. A.
,
Lados
,
D. A.
,
Iannacchione
,
G. S.
, and
Peterson
,
A. M.
,
2018
, “
Fabrication and Properties of Novel Polymer-Metal Composites Using Fused Deposition Modeling
,”
Compos. Sci. Technol.
,
158
, pp.
43
50
. 10.1016/j.compscitech.2018.01.049
10.
Lanzl
,
L.
,
Wudy
,
K.
,
Greiner
,
S.
, and
Drummer
,
D.
,
2018
, “
Selective Laser Sintering of Copper Filled Polyamide 12: Characterization of Powder Properties and Process Behavior
,”
Polym. Compos
,
40
(
5
), pp.
1801
1809
. 10.1002/pc.24940
11.
Kalsoom
,
U.
,
Peristyy
,
A.
,
Nesterenko
,
P. N.
, and
Paull
,
B.
,
2016
, “
A 3D Printable Diamond Polymer Composite: A Novel Material for Fabrication of Low Cost Thermally Conducting Devices
,”
RSC Adv.
,
6
(
44
), pp.
38140
38147
. 10.1039/C6RA05261D
12.
Singh Boparai
,
K.
,
Singh
,
R.
, and
Singh
,
H.
,
2016
, “
Wear Behavior of FDM Parts Fabricated by Composite Material Feed Stock Filament
,”
Rapid Prototyp. J.
,
22
(
2
), pp.
350
357
. 10.1108/RPJ-06-2014-0076
13.
Singh
,
R.
,
Singh
,
S.
, and
Fraternali
,
F.
,
2016
, “
Development of in-House Composite Wire Based Feed Stock Filaments of Fused Deposition Modelling for Wear-Resistant Materials and Structures
,”
Composites, Part B
,
98
, pp.
244
249
. 10.1016/j.compositesb.2016.05.038
14.
Singh
,
R.
,
Singh
,
N.
,
Amendola
,
A.
, and
Fraternali
,
F.
,
2017
, “
On the Wear Properties of Nylon6-SiC-Al2O3 Based Fused Deposition Modelling Feed Stock Filament
,”
Composites, Part B
,
119
, pp.
125
131
. 10.1016/j.compositesb.2017.03.042
15.
Boparai
,
K.
,
Singh
,
R.
, and
Singh
,
H.
,
2015
, “
Comparison of Tribological Behaviour for Nylon6-Al-Al2O3 and ABS Parts Fabricated by Fused Deposition Modelling
,”
Virtual Phys. Prototyping
,
10
(
2
), pp.
59
66
. 10.1080/17452759.2015.1037402
16.
Hon
,
K. K. B.
, and
Gill
,
T. J.
,
2003
, “
Selective Laser Sintering of SiC/Polyamide Composites
,”
CIRP Ann.
,
52
(
1
), pp.
173
176
. 10.1016/S0007-8506(07)60558-7
17.
Huber
,
C.
,
Abert
,
C.
,
Bruckner
,
F.
,
Groenefeld
,
M.
,
Muthsam
,
O.
,
Schuschnigg
,
S.
,
Sirak
,
K.
,
Thanhoffer
,
R.
,
Teliban
,
I.
,
Vogler
,
C.
,
Windl
,
R.
, and
Suess
,
D.
,
2016
, “
3D Print of Polymer Bonded Rare-Earth Magnets, and 3D Magnetic Field Scanning with an End-User 3D Printer
,”
Appl. Phys. Lett.
,
109
(
16
), p.
162401
. 10.1063/1.4964856
18.
Paranthaman
,
M. P.
,
Shafer
,
C.
,
Elliott
,
A.
,
Siddel
,
D.
,
McGuire
,
M.
,
Springfield
,
R.
,
Martin
,
J.
,
Fredette
,
R.
, and
Ormerod
,
J.
,
2016
, “
Binder Jetting: A Novel NdFeB Bonded Magnet Fabrication Process
,”
JOM
,
68
(
7
), pp.
1978
1982
. 10.1007/s11837-016-1883-4
19.
Baldissera
,
A. B.
,
Pavez
,
P.
,
Wendhausen
,
P. A. P.
,
Ahrens
,
C. H.
, and
Mascheroni
,
J. M.
,
2017
, “
Additive Manufacturing of Bonded Nd–Fe–B—Effect of Process Parameters on Magnetic Properties
,”
IEEE Trans. Magn.
,
53
(
11
), pp.
1
4
. 10.1109/TMAG.2017.2715722
20.
Bollig
,
L. M.
,
Hilpisch
,
P. J.
,
Mowry
,
G. S.
, and
Nelson-Cheeseman
,
B. B.
,
2017
, “
3D Printed Magnetic Polymer Composite Transformers
,”
J. Magn. Magn. Mater.
,
442
, pp.
97
101
. 10.1016/j.jmmm.2017.06.070
21.
Compton
,
B. G.
,
Kemp
,
J. W.
,
Novikov
,
T. V.
,
Pack
,
R. C.
,
Nlebedim
,
C. I.
,
Duty
,
C. E.
,
Rios
,
O.
, and
Paranthaman
,
M. P.
,
2018
, “
Direct-Write 3D Printing of NdFeB Bonded Magnets
,”
Mater. Manuf. Processes
,
33
(
1
), pp.
109
113
. 10.1080/10426914.2016.1221097
22.
Gandha
,
K.
,
Li
,
L.
,
Nlebedim
,
I. C.
,
Post
,
B. K.
,
Kunc
,
V.
,
Sales
,
B. C.
,
Bell
,
J.
, and
Paranthaman
,
M. P.
,
2018
, “
Additive Manufacturing of Anisotropic Hybrid NdFeB-SmFeN Nylon Composite Bonded Magnets
,”
J. Magn. Magn. Mater.
,
467
, pp.
8
13
. 10.1016/j.jmmm.2018.07.021
23.
Shen
,
A.
,
Bailey
,
C. P.
,
Ma
,
A. W. K.
, and
Dardona
,
S.
,
2018
, “
UV-Assisted Direct Write of Polymer-Bonded Magnets
,”
J. Magn. Magn. Mater.
,
462
, pp.
220
225
. 10.1016/j.jmmm.2018.03.073
24.
Li
,
L.
,
Jones
,
K.
,
Sales
,
B.
,
Pries
,
J. L.
,
Nlebedim
,
I. C.
,
Jin
,
K.
,
Bei
,
H.
,
Post
,
B. K.
,
Kesler
,
M. S.
,
Rios
,
O.
,
Kunc
,
V.
,
Fredette
,
R.
,
Ormerod
,
J.
,
Williams
,
A.
,
Lograsso
,
T. A.
, and
Paranthaman
,
M. P.
,
2018
, “
Fabrication of Highly Dense Isotropic Nd-Fe-B Nylon Bonded Magnets via Extrusion-Based Additive Manufacturing
,”
Addit. Manuf.
,
21
, pp.
495
500
. 10.1016/j.addma.2018.04.001
25.
Li
,
L.
,
Post
,
B.
,
Kunc
,
V.
,
Elliott
,
A. M.
, and
Paranthaman
,
M. P.
,
2017
, “
Additive Manufacturing of Near-Net-Shape Bonded Magnets: Prospects and Challenges
,”
Scr. Mater.
,
135
, pp.
100
104
. 10.1016/j.scriptamat.2016.12.035
26.
Li
,
L.
,
Tirado
,
A.
,
Nlebedim
,
I. C.
,
Rios
,
O.
,
Post
,
B.
,
Kunc
,
V.
,
Lowden
,
R. R.
,
Lara-Curzio
,
E.
,
Fredette
,
R.
,
Ormerod
,
J.
,
Lograsso
,
T. A.
, and
Paranthaman
,
M. P.
,
2016
, “
Big Area Additive Manufacturing of High Performance Bonded NdFeB Magnets
,”
Sci. Rep.
,
6
(
1
), p.
36212
. 10.1038/srep36212
27.
Loh
,
G. H.
,
Pei
,
E.
,
Harrison
,
D.
, and
Monzón
,
M. D.
,
2018
, “
An Overview of Functionally Graded Additive Manufacturing
,”
Addit. Manuf.
,
23
, pp.
34
44
. 10.1016/j.addma.2018.06.023
28.
Shishkovsky
,
I. V.
,
Scherbakov
,
V. I.
,
Saraeva
,
I. N.
, and
Ionin
,
A. A.
,
2017
, “
Thermoelectric Properties of Gradient Polymer Composites with Nano-Inclusions Fabricated by Laser Assisted Sintering
,”
Laser Phys. Lett.
,
14
(
3
), p.
035601
. 10.1088/1612-202X/aa58bf
29.
Huber
,
C.
,
Abert
,
C.
,
Bruckner
,
F.
,
Groenefeld
,
M.
,
Schuschnigg
,
S.
,
Teliban
,
I.
,
Vogler
,
C.
,
Wautischer
,
G.
,
Windl
,
R.
, and
Suess
,
D.
,
2017
, “
3D Printing of Polymer-Bonded Rare-Earth Magnets With a Variable Magnetic Compound Fraction for a Predefined Stray Field
,”
Sci. Rep.
,
7
(
1
), p.
9419
. 10.1038/s41598-017-09864-0
30.
Wei
,
X.
,
Li
,
D.
,
Jiang
,
W.
,
Gu
,
Z.
,
Wang
,
X.
,
Zhang
,
Z.
, and
Sun
,
Z.
,
2015
, “
3D Printable Graphene Composite
,”
Sci. Rep.
,
5
(
1
), p.
11181
. 10.1038/srep11181
31.
Khatri
,
B.
,
Lappe
,
K.
,
Noetzel
,
D.
,
Pursche
,
K.
, and
Hanemann
,
T.
,
2018
, “
A 3D-Printable Polymer-Metal Soft-Magnetic Functional Composite—Development and Characterization
,”
Materials
,
11
(
2
), p.
189
. 10.3390/ma11020189
32.
Shi
,
Q.
,
Gu
,
D.
,
Lin
,
K.
,
Chen
,
W.
,
Xia
,
M.
, and
Dai
,
D.
,
2018
, “
The Role of Reinforcing Particle Size in Tailoring Interfacial Microstructure and Wear Performance of Selective Laser Melting WC/Inconel 718 Composites
,”
ASME J. Manuf. Sci. Eng.
,
140
(
11
), p.
111019
. 10.1115/1.4040544
33.
Tapia
,
G.
,
King
,
W.
,
Johnson
,
L.
,
Arroyave
,
R.
,
Karaman
,
I.
, and
Elwany
,
A.
,
2018
, “
Uncertainty Propagation Analysis of Computational Models in Laser Powder Bed Fusion Additive Manufacturing Using Polynomial Chaos Expansions
,”
ASME J. Manuf. Sci. Eng.
,
140
(
12
), p.
121006
. 10.1115/1.4041179
34.
Montazeri
,
M.
,
Yavari
,
R.
,
Rao
,
P.
, and
Boulware
,
P.
,
2018
, “
In-Process Monitoring of Material Cross-Contamination Defects in Laser Powder Bed Fusion
,”
ASME J. Manuf. Sci. Eng.
,
140
(
11
), p.
111001
. 10.1115/1.4040543
35.
Cheng
,
B.
,
Lane
,
B.
,
Whiting
,
J.
, and
Chou
,
K.
,
2018
, “
A Combined Experimental-Numerical Method to Evaluate Powder Thermal Properties in Laser Powder Bed Fusion
,”
ASME J. Manuf. Sci. Eng.
,
140
(
11
), p.
111008
. 10.1115/1.4040877
36.
Imani
,
F.
,
Gaikwad
,
A.
,
Montazeri
,
M.
,
Rao
,
P.
,
Yang
,
H.
, and
Reutzel
,
E.
,
2018
, “
Process Mapping and In-Process Monitoring of Porosity in Laser Powder Bed Fusion Using Layerwise Optical Imaging
,”
ASME J. Manuf. Sci. Eng.
,
140
(
10
), p.
101009
. 10.1115/1.4040615
37.
Cheng
,
L.
,
Liang
,
X.
,
Belski
,
E.
,
Wang
,
X.
,
Sietins
,
J. M.
,
Ludwick
,
S.
, and
To
,
A.
,
2018
, “
Natural Frequency Optimization of Variable-Density Additive Manufactured Lattice Structure: Theory and Experimental Validation
,”
ASME J. Manuf. Sci. Eng.
,
140
(
10
), p.
105002
. 10.1115/1.4040622
38.
Wei
,
C.
,
Li
,
L.
,
Zhang
,
X.
, and
Chueh
,
Y.-H.
,
2018
, “
3D Printing of Multiple Metallic Materials via Modified Selective Laser Melting
,”
CIRP Ann.
,
67
(
1
), pp.
245
248
. 10.1016/j.cirp.2018.04.096
39.
Zhang
,
X.
,
Wei
,
C.
,
Chueh
,
Y.-H.
, and
Li
,
L.
,
2018
, “
An Integrated Dual Ultrasonic Selective Powder Dispensing Platform for 3D Printing of Multiple Material Metal/Glass Objects in Selective Laser Melting
,”
ASME J. Manuf. Sci. Eng.
,
141
(
1
), p.
011003
. 10.1115/1.4041427
40.
Wei
,
C.
,
Sun
,
Z.
,
Chen
,
Q.
,
Liu
,
Z.
, and
Li
,
L.
,
2019
, “
Additive Manufacturing of Horizontal and 3D Functionally Graded 316L/Cu10Sn Components via Multiple Material Selective Laser Melting
,”
ASME J. Manuf. Sci. Eng.
,
141
(
8
), p.
081014
. 10.1115/1.4043983
41.
Stichel
,
T.
,
Laumer
,
T.
,
Raths
,
M.
, and
Roth
,
S.
,
2018
, “
Multi-material Deposition of Polymer Powders with Vibrating Nozzles for a New Approach of Laser Sintering
,”
J. Laser Micro Nanoeng.
,
13
(
2
), pp.
55
62
. 10.2961/jlmn.2018.02.0002
42.
Friedrich
,
K.
,
2018
, “
Polymer Composites for Tribological Applications
,”
Adv. Ind. Eng. Polym. Res.
,
1
(
1
), pp.
3
39
. 10.1016/j.aiepr.2018.05.001
You do not currently have access to this content.