Abstract

Distortion in laser-based additive manufacturing (LBAM) is a critical issue that adversely affects the geometric integrity of additively manufactured parts and generally exhibits a complicated dependence on the underlying material. The differences in properties between distinct materials prevent the immediate application of a distortion model learned for one material to another, which introduces the challenge in LBAM of learning a distortion model for a new material system given past experiments. Current methods for investigating the distortion of different material systems typically involve finite element analysis or a large number of experiments in an empirical study. However, these methods do not learn from previous experiments and can incur significant costs in terms of computation, time, or resources. We propose a Bayesian model transfer methodology that is both physics-based and data-driven to leverage past experiments on previously studied material systems for more efficient distortion modeling of new systems. This method transfers distortion models across distinct materials based on the statistical effect equivalence framework by formulating the differences between two materials as a lurking variable. Our method reduces the experimentation and effort needed for specifying distortion models for new material systems. We validate our methodology in a case study of distortion model transfer from Ti–6Al–4V disks to 316L stainless steel disks. This case study is the first instance of model transfer between material systems and illustrates the ability of the Bayesian model transfer methodology to address the issue of comprehensive distortion modeling across varying material systems in LBAM.

References

References
1.
Sabbaghi
,
A.
, and
Huang
,
Q.
,
2018
, “
Model Transfer Across Additive Manufacturing Processes via Mean Effect Equivalence of Lurking Variables
,”
Ann. Appl. Stat.
,
12
(
4
), pp.
2409
2429
. 10.1214/18-AOAS1158
2.
Lee
,
J.
,
Bagheri
,
B.
, and
Kao
,
H.-A.
,
2015
, “
A Cyber-Physical Systems Architecture for Industry 4.0-Based Manufacturing Systems
,”
Manuf. Lett.
,
3
(
1
), pp.
18
23
. 10.1016/j.mfglet.2014.12.001
3.
Baufeld
,
B.
,
Van Der Biest
,
O.
,
Gault
,
R.
, and
Ridgway
,
K.
,
2011
, “
Manufacturing Ti–6Al–4V Components by Shaped Metal Deposition: Microstructure and Mechanical Properties
,”
IOP Conference Series: Materials Science and Engineering
,
University of Sheffield
,
September
, pp.
1
6
.
4.
Carroll
,
B. E.
,
Palmer
,
T. A.
, and
Beese
,
A. M.
,
2015
, “
Anisotropic Tensile Behavior of Ti–6Al–4V Components Fabricated With Directed Energy Deposition Additive Manufacturing
,”
Acta Mater.
,
87
(
1
), pp.
309
320
. 10.1016/j.actamat.2014.12.054
5.
Helmer
,
H. E.
,
Körner
,
C.
, and
Singer
,
R. F.
,
2014
, “
Additive Manufacturing of Nickel-Based Superalloy Inconel 718 by Selective Electron Beam Melting: Processing Window and Microstructure
,”
J. Mater. Res.
,
29
(
17
), pp.
1987
1996
. 10.1557/jmr.2014.192
6.
Jia
,
Q.
, and
Gu
,
D.
,
2014
, “
Selective Laser Melting Additive Manufacturing of Inconel 718 Superalloy Parts: Densification, Microstructure and Properties
,”
J. Alloys Compd.
,
585
(
1
), pp.
713
721
. 10.1016/j.jallcom.2013.09.171
7.
Khairallah
,
S. A.
,
Anderson
,
A. T.
,
Rubenchik
,
A.
, and
King
,
W. E.
,
2016
, “
Laser Powder-Bed Fusion Additive Manufacturing: Physics of Complex Melt Flow and Formation Mechanisms of Pores, Spatter, and Denudation Zones
,”
Acta Mater.
,
108
(
1
), pp.
36
45
. 10.1016/j.actamat.2016.02.014
8.
King
,
W. E.
,
Barth
,
H. D.
,
Castillo
,
V. M.
,
Gallegos
,
G. F.
,
Gibbs
,
J. W.
,
Hahn
,
D. E.
,
Kamath
,
C.
, and
Rubenchik
,
A. M.
,
2014
, “
Observation of Keyhole-Mode Laser Melting in Laser Powder-Bed Fusion Additive Manufacturing
,”
J. Mater. Process. Technol.
,
214
(
12
), pp.
2915
2925
. 10.1016/j.jmatprotec.2014.06.005
9.
Thijs
,
L.
,
Verhaeghe
,
F.
,
Craeghs
,
T.
,
Humbeeck
,
J. V.
, and
Kruth
,
J. P.
,
2010
, “
A Study of the Microstructural Evolution During Selective Laser Melting of Ti–6Al–4V
,”
Acta Mater.
,
58
(
9
), pp.
3303
3312
. 10.1016/j.actamat.2010.02.004
10.
Tian
,
Y.
,
McAllister
,
D.
,
Colijn
,
H.
,
Mills
,
M.
,
Farson
,
D.
,
Nordin
,
M.
, and
Babu
,
S.
,
2014
, “
Rationalization of Microstructure Heterogeneity in Inconel 718 Builds Made by the Direct Laser Additive Manufacturing Process
,”
Metall. Mater. Trans. A
,
45
(
10
), pp.
4470
4483
. 10.1007/s11661-014-2370-6
11.
Wu
,
A. S.
,
Brown
,
D. W.
,
Kumar
,
M.
,
Gallegos
,
G. F.
, and
King
,
W. E.
,
2014
, “
An Experimental Investigation Into Additive Manufacturing-Induced Residual Stresses in 316L Stainless Steel
,”
Metall. Mater. Trans. A
,
45
(
13
), pp.
6260
6270
. 10.1007/s11661-014-2549-x
12.
Wei
,
C.
,
Sun
,
Z.
,
Chen
,
Q.
,
Liu
,
Z.
, and
Li
,
L.
,
2019
, “
Additive Manufacturing of Horizontal and 3D Functionally Graded 316L/Cu10Sn Components via Multiple Material Selective Laser Melting
,”
ASME J. Manuf. Sci. Eng.
,
141
(
8
), p.
081014
. https://doi.org/10.1115/1.4043983
13.
Huang
,
J.
,
Xu
,
Z.
,
Deng
,
Y.
, and
Peng
,
L.
,
2019
, “
Electropulsing-Induced to Phase Transformation of Ti–6Al–4V
,”
ASME J. Manuf. Sci. Eng.
,
141
(
11
), p.
111012
. 10.1115/1.4044835
14.
ASM Aerospace Specification Materials Inc.
,
2018
, “
Titanium Ti–6Al–4V (Grade 5), Annealed
,”
Pompano Beach, FL
.
15.
AK Steel
,
2016
, “
316/316L Stainless Steel
.”
Tech. Rep.
,
AK Steel
,
West Chester, OH
.
16.
Dunbar
,
A. J.
,
Denlinger
,
E. R.
,
Heigel
,
J.
,
Michaleris
,
P.
,
Guerrier
,
P.
,
Martukanitz
,
R.
, and
Simpson
,
T. W.
,
2016
, “
Development of Experimental Method for In Situ Distortion and Temperature Measurements During the Laser Powder Bed Fusion Additive Manufacturing Process
,”
Addit. Manuf.
,
12
(
A
), pp.
25
30
. https://doi.org/10.1016/j.addma.2016.04.007
17.
Roberts
,
I. A.
,
2012
, “
Investigation of Residual Stresses in the Laser Melting of Metal Powders in AM
,”
Ph.D. thesis
,
University of Wolverhampton
,
Wolverhampton
.
18.
Paul
,
R.
,
Anand
,
S.
, and
Gerner
,
F.
,
2014
, “
Effect of Thermal Deformation on Part Errors in Metal Powder Based Additive Manufacturing Processes
,”
ASME J. Manuf. Sci. Eng.
,
136
(
3
), p.
031009
. 10.1115/1.4026524
19.
Mukherjee
,
T.
,
Zuback
,
J. S.
,
De
,
A.
, and
DebRoy
,
T.
,
2016
, “
Printability of Alloys for Additive Manufacturing
,”
Sci. Rep.
,
6
(
1
), pp.
1
8
.
20.
Peng
,
H.
,
Ghasri-Khouzani
,
M.
,
Gong
,
S.
,
Attardo
,
R.
,
Ostiguy
,
P.
,
Gatrell
,
B. A.
,
Budzinski
,
J.
,
Tomonto
,
C.
,
Neidig
,
J.
,
Shankar
,
M. R.
,
Billo
,
R.
,
Go
,
D. B.
, and
Hoelzle
,
D.
,
2018
, “
Fast Prediction of Thermal Distortion in Metal Powder Bed Fusion Additive Manufacturing: Part 1, a Thermal Circuit Network Model
,”
Addit. Manuf.
,
22
(
1
), pp.
852
868
. 10.1016/j.addma.2018.05.023
21.
Peng
,
H.
,
Ghasri-Khouzani
,
M.
,
Gong
,
S.
,
Attardo
,
R.
,
Ostiguy
,
P.
,
Rogge
,
R. B.
,
Gatrell
,
B. A.
,
Budzinski
,
J.
,
Tomonto
,
C.
,
Neidig
,
J.
,
Shankar
,
M. R.
,
Billo
,
R.
,
Go
,
D. B.
, and
Hoelzle
,
D.
,
2018
, “
Fast Prediction of Thermal Distortion in Metal Powder Bed Fusion Additive Manufacturing: Part 2, a Quasi-Static Thermo-Mechanical Model
,”
Addit. Manuf.
,
22
(
1
), pp.
869
882
. 10.1016/j.addma.2018.05.001
22.
Denlinger
,
E. R.
,
Heigel
,
J. C.
,
Michaleris
,
P.
, and
Palmer
,
T. A.
,
2015
, “
Effect of Inter-Layer Dwell Time on Distortion and Residual Stress in Additive Manufacturing of Titanium and Nickel Alloys
,”
J. Mater. Process. Technol.
,
215
(
1
), pp.
123
131
. 10.1016/j.jmatprotec.2014.07.030
23.
Corbin
,
D. J.
,
Nassar
,
A. R.
,
Reutzel
,
E. W.
,
Beese
,
A. M.
, and
Michaleris
,
P.
,
2018
, “
Effect of Substrate Thickness and Preheating on the Distortion of Laser Deposited Ti–6Al–4V
,”
ASME J. Manuf. Sci. Eng.
,
140
(
6
), p.
061009
. 10.1115/1.4038890
24.
Levkulich
,
N.
,
Semiatin
,
S.
,
Gockel
,
J.
,
Middendorf
,
J.
,
DeWald
,
A.
, and
Klingbeil
,
N.
,
2019
, “
The Effect of Process Parameters on Residual Stress Evolution and Distortion in the Laser Powder Bed Fusion of Ti–6Al–4V
,”
Addit. Manuf.
,
28
(
1
), pp.
475
484
. 10.1016/j.addma.2019.05.015
25.
Ghasri-Khouzani
,
M.
,
Peng
,
H.
,
Rogge
,
R.
,
Attardo
,
R.
,
Ostiguy
,
P.
,
Neidig
,
J.
,
Billo
,
R.
,
Hoelzle
,
D.
, and
Shankar
,
M. R.
,
2017
, “
Experimental Measurement of Residual Stress and Distortion in Additively Manufactured Stainless Steel Components With Various Dimensions
,”
Mater. Sci. Eng. A
,
707
(
11
), pp.
689
700
. 10.1016/j.msea.2017.09.108
26.
Pan
,
S. J.
, and
Yang
,
Q.
,
2010
, “
A Survey on Transfer Learning
,”
IEEE Trans. Knowl. Data Eng.
,
22
(
10
), pp.
1345
1359
. 10.1109/TKDE.2009.191
27.
Dai
,
W.
,
Yang
,
Q.
,
Xue
,
G.-R.
, and
Yu
,
Y.
,
2007
, “
Boosting for Transfer Learning
,”
Proceedings of the 24th International Conference on Machine Learning
,
Oregon State University
,
June
, pp.
193
200
.
28.
Pardoe
,
D.
, and
Stone
,
P.
,
2010
, “
Boosting for Regression Transfer
,”
Proceedings of the 27th International Conference on Machine Learning
,
Haifa, Israel
,
June 2010
, pp.
863
870
.
29.
Weiss
,
K.
,
Khoshgoftaar
,
T. M.
, and
Wang
,
D.
,
2016
, “
A Survey of Transfer Learning
,”
J. Big Data
,
3
(
1
), pp.
1
40
. 10.1186/s40537-016-0043-6
30.
Day
,
O.
, and
Khoshgoftaar
,
T. M.
,
2017
, “
A Survey on Heterogeneous Transfer Learning
,”
J. Big Data
,
4
(
1
), pp.
1
42
. 10.1186/s40537-016-0062-3
31.
Raina
,
P.
,
Battle
,
A.
,
Lee
,
H.
,
Packer
,
B.
, and
Ng
,
A.
,
2007
, “
Self-Taught Learning: Transfer Learning From Unlabeled Data
,”
Proceedings of the 24th International Conference Machine Learning
,
Oregon State University
,
June 2007
, pp.
759
766
.
32.
Pearl
,
J.
, and
Bareinboim
,
E.
,
2014
, “
External Validity: From Do-Calculus to Transportability Across Populations
,”
Stat. Sci.
,
29
(
4
), pp.
579
595
. 10.1214/14-STS486
33.
Bareinboim
,
E.
, and
Pearl
,
J.
,
2016
, “
Causal Inference and the Data-Fusion Problem
,”
Proceedings of the National Academy of Sciences
,
113
(
27
), pp.
7345
7352
. https://doi.org/10.1073/pnas.1510507113
34.
Pearl
,
J.
,
1995
, “
Causal Diagrams for Empirical Research
,”
Biometrika
,
82
(
4
), pp.
669
688
. 10.1093/biomet/82.4.669
35.
Aboutaleb
,
A. M.
,
Bian
,
L.
,
Elwany
,
A.
,
Shamsaei
,
N.
,
Thompson
,
S. M.
, and
Tapia
,
G.
,
2017
, “
Accelerated Process Optimization for Laser-Based Additive Manufacturing by Leveraging Similar Prior Studies
,”
IISE Trans.
,
49
(
1
), pp.
31
44
. 10.1080/0740817X.2016.1189629
36.
Joseph
,
V. R.
,
Dasgupta
,
T.
,
Tuo
,
R.
, and
Wu
,
C. J.
,
2015
, “
Sequential Exploration of Complex Surfaces Using Minimum Energy Designs
,”
Technometrics
,
57
(
1
), pp.
64
74
. 10.1080/00401706.2014.881749
37.
Wang
,
H.
,
Huang
,
Q.
, and
Katz
,
R.
,
2005
, “
Multi-Operational Machining Processes Modeling for Sequential Root Cause Identification and Measurement Reduction
,”
ASME Trans. J. Manuf. Sci. Eng.
,
127
(
3
), pp.
512
521
. 10.1115/1.1948403
38.
Wang
,
H.
, and
Huang
,
Q.
,
2006
, “
Error Cancellation Modeling and Its Application in Machining Process Control
,”
IIE Trans. Qual. Reliab.
,
38
(
4
), pp.
379
388
.
39.
Wang
,
H.
, and
Huang
,
Q.
,
2007
, “
Using Error Equivalence Concept to Automatically Adjust Discrete Manufacturing Processes for Dimensional Variation Control
,”
ASME Trans. J. Manuf. Sci. Eng.
,
129
(
3
), pp.
644
652
. 10.1115/1.2714581
40.
Huang
,
Q.
, and
Wang
,
H.
,
2008
, “
Error Equivalence Methodology for Dimensional Variation Control in Manufacturing
,”
2008 IEEE Conference on Robotics, Automation and Mechatronics
,
Chengdu, China
,
September 2008
, pp.
1
6
.
41.
Sabbaghi
,
A.
, and
Huang
,
Q.
,
2016
, “
Predictive Model Building Across Different Process Conditions and Shapes in 3D Printing
,”
2016 IEEE International Conference on Automation Science and Engineering (CASE 2016)
,
Fort Worth, TX
,
August 2016
, pp.
774
779
.
42.
Ferreira
,
R.
,
Sabbaghi
,
A.
, and
Huang
,
Q.
,
2019
, “
Automated Geometric Shape Deviation Modeling for Additive Manufacturing Systems via Bayesian Neural Networks
,”
IEEE Trans. Autom. Sci. Eng.
, pp.
1
15
. 10.1109/TASE.2019.2936821
43.
Malaguti
,
G.
,
Denti
,
L.
,
Bassoli
,
E.
,
Franchi
,
I.
,
Bortolini
,
S.
, and
Gatto
,
A.
,
2011
, “
Dimensional Tolerances and Assembly Accuracy of Dental Implants and Machined Versus Cast-On Abutments
,”
Clin. Implant Dent. Relat. Res.
,
13
(
2
), pp.
134
140
. 10.1111/j.1708-8208.2009.00189.x
44.
Coykendall
,
J.
,
Cotteleer
,
M.
,
Holdowsky
,
L.
, and
Mahto
,
M.
,
2014
,
3D Opportunity in Aerospace and Defense
,
Deloitte University Press
,
Deloitte: New York
, pp.
1
28
.
45.
Huang
,
Q.
,
Zhang
,
J.
,
Sabbaghi
,
A.
, and
Dasgupta
,
T.
,
2015
, “
Optimal Offline Compensation of Shape Shrinkage for 3D Printing Processes
,”
IIE Trans. Qual. Reliab.
,
47
(
5
), pp.
431
441
. 10.1080/0740817X.2014.955599
46.
Rubin
,
D. B.
,
1984
, “
Bayesianly Justifiable and Relevant Frequency Calculations for the Applied Statistician
,”
Ann. Stat.
,
12
(
4
), pp.
1151
1172
. 10.1214/aos/1176346785
47.
Meng
,
X.-L.
,
1994
, “
Posterior Predictive p-values
,”
Ann. Stat.
,
22
(
3
), pp.
1142
1160
. 10.1214/aos/1176325622
48.
Gelman
,
A.
,
Meng
,
X.-L.
, and
Stern
,
H.
,
1996
, “
Posterior Predictive Assessment of Model Fitness via Realized Discrepancies
,”
Stat. Sin.
,
6
(
4
), pp.
733
807
.
49.
Sabbaghi
,
A.
,
Dasgupta
,
T.
,
Huang
,
Q.
, and
Zhang
,
J.
,
2014
, “
Inference for Deformation and Interference in 3D Printing
,”
Ann. Appl. Stat.
,
8
(
3
), pp.
1395
1415
. 10.1214/14-AOAS762
50.
Sabbaghi
,
A.
,
Huang
,
Q.
, and
Dasgupta
,
T.
,
2018
, “
Bayesian Model Building From Small Samples of Disparate Data for Capturing In-Plane Deviation in Additive Manufacturing
,”
Technometrics
,
60
(
4
), pp.
532
544
. 10.1080/00401706.2017.1391715
51.
Mukherjee
,
T.
,
Manvatkar
,
V.
,
De
,
A.
, and
DebRoy
,
T.
,
2017
, “
Mitigation of Thermal Distortion During Additive Manufacturing
,”
Scr. Mater.
,
127
(
1
), pp.
79
83
. 10.1016/j.scriptamat.2016.09.001
52.
Luan
,
H.
,
Grasso
,
M.
,
Colosimo
,
B. M.
, and
Huang
,
Q.
,
2019
, “
Prescriptive Data-Analytical Modeling of Laser Powder Bed Fusion Processes for Accuracy Improvement
,”
ASME J. Manuf. Sci. Eng.
,
141
(
1
), p.
011008
. 10.1115/1.4041709
You do not currently have access to this content.