Abstract

Pocket milling has long been a popular means for machining pocket features in structural parts and skins in the aviation industry. Recent advanced milling technologies pose new challenges for pocket milling path which existing contour-parallel path generation schemes cannot overcome. For high-speed machining, pocket milling path is desired to be smooth and with no tool retractions during the process, while the path stepover should be kept within a prescribed range to achieve relatively constant cutting load. These geometric constraints are also vital in the application of aircraft skin mirror milling in order to guarantee a correct and consistent thickness signal reception for real-time adjustment of the process. Traditional path optimization based on local modification can only meet a few of these constraints while others are being violated. Therefore, we propose a novel contour-parallel path generation scheme that respects all these process constraints by utilizing the idea of image morphology. The two-step scheme first generates an initial path by propagating from the rectified medial curve of the pocket shape. The initial path is then treated as a binary image being iteratively deformed and projected back into the pocket region via quadratic optimization. Experimental results show that our developed scheme can generate a smooth, tool retraction free and stepover-guaranteed path for various shapes of pocket.

References

References
1.
Toh
,
C. K.
,
2004
, “
A Study of the Effects of Cutter Path Strategies and Orientations in Milling
,”
J. Mater. Process. Technol.
,
152
(
3
), pp.
346
356
. 10.1016/j.jmatprotec.2004.04.382
2.
Zhang
,
X.
,
Zhang
,
W.
,
Zhang
,
J.
,
Pang
,
B.
, and
Zhao
,
W.
,
2018
, “
General Modeling and Calibration Method for Cutting Force Prediction With Flat-End Cutter
,”
ASME J. Manuf. Sci. Eng.
,
140
(
2
), p.
021007
. 10.1115/1.4038371
3.
Niu
,
J.
,
Ding
,
Y.
,
Geng
,
Z.
,
Zhu
,
L.
, and
Ding
,
H.
,
2018
, “
Patterns of Regenerative Milling Chatter Under Joint Influences of Cutting Parameters, Tool Geometries, and Runout
,”
ASME J. Manuf. Sci. Eng.
,
140
(
12
), p.
121004
. 10.1115/1.4041250
4.
Lin
,
Z. W.
,
Fu
,
J. Z.
,
Shen
,
H. Y.
, and
Gan
,
W. F.
,
2013
, “
Global Uncut Regions Removal for Efficient Contour-Parallel Milling
,”
Int. J. Adv. Manuf. Technol.
,
68
(
5-8
), pp.
1241
1252
. 10.1007/s00170-013-4915-z
5.
Xu
,
K.
,
Wu
,
B.
,
Li
,
Z.
, and
Tang
,
K.
,
2019
, “
Time-Efficient Trochoidal Tool Path Generation for Milling Arbitrary Curved Slots
,”
ASME J. Manuf. Sci. Eng.
,
141
(
3
), p.
031008
. 10.1115/1.4042052
6.
Wang
,
Q. H.
,
Wang
,
S.
,
Jiang
,
F.
, and
Li
,
J. R.
,
2016
, “
Adaptive Trochoidal Toolpath for Complex Pockets Machining
,”
Int. J. Prod. Res.
,
20
, pp.
1
14
. 10.1080/00207543.2016.1143135
7.
Kim
,
H. C.
,
2011
, “
Tool Path Generation and Modification for Constant Cutting Forces in Direction Parallel Milling
,”
Int. J. Adv. Manuf. Technol.
,
52
(
9–12
), pp.
937
947
. 10.1007/s00170-010-2790-4
8.
Choy
,
H. S.
, and
Chan
,
K. W.
,
2003
, “
A Corner-Looping Based Tool Path for Pocket Milling
,”
Comput. Aided Des.
,
35
(
2
), pp.
155
166
. 10.1016/S0010-4485(02)00049-0
9.
Park
,
S. C.
, and
Chung
,
Y. C.
,
2002
, “
Offset Tool-Path Linking for Pocket Machining
,”
Comput. Aided Des.
,
34
(
4
), pp.
299
308
. 10.1016/S0010-4485(01)00088-4
10.
Hu
,
P.
,
Chen
,
L.
, and
Tang
,
K.
,
2016
, “
Efficiency-Optimal Iso-Planar Tool Path Generation for Five-Axis Finishing Machining of Freeform Surfaces
,”
Comput. Aided Des.
,
83
, pp.
33
50
10.1016/j.cad.2016.10.001
11.
Bahloul
,
E.
,
Brioua
,
M.
, and
Rebiai
,
C.
,
2015
, “
An Efficient Contour Parallel Tool Path Generation for Arbitrary Pocket Shape Without Uncut Regions
,”
Int. J. Precis. Eng. Manuf.
,
16
(
6
), pp.
1157
1169
. 10.1007/s12541-015-0150-x
12.
Choi
,
B. K.
,
Kim
,
B. H.
,
1997
, “
Die-Cavity Pocketing Via Cutting Simulation
,”
Comput. Aided Des.
,
29
(
12
), pp.
837
846
. 10.1016/S0010-4485(97)00031-6
13.
Park
,
S. C.
, and
Choi
,
B. K.
,
2001
, “
Uncut Free Pocketing Tool-Paths Generation Using Pair-Wise Offset Algorithm
,”
Comput. Aided Des.
,
33
(
10
), pp.
739
746
. 10.1016/S0010-4485(00)00109-3
14.
Hansen
,
A.
, and
Arbab
,
F.
,
1992
, “
An Algorithm for Generating NC Tool Paths for Arbitrarily Shaped Pockets with Islands
,”
ACM Trans. Graphics
,
11
(
2
), pp.
152
182
. 10.1145/130826.130832
15.
Persson
,
H.
,
1978
, “
NC Machining of Arbitrarily Shaped Pockets
,”
Comput. Aided Des.
,
10
(
3
), pp.
169
174
. 10.1016/0010-4485(78)90141-0
16.
Held
,
M.
,
1998
, “
Voronoi Diagrams and Offset Curves of Curvilinear Polygons
,”
Comput. Aided Des.
,
30
(
4
), pp.
287
300
. 10.1016/S0010-4485(97)00071-7
17.
Held
,
M.
,
2001
, “
VRONI: An Engineering Approach to the Reliable and Efficient Computation of Voronoi Diagrams of Points and Line Segments
,”
Comput. Geom. Theory Applications
,
18
(
2
), pp.
95
123
. 10.1016/S0925-7721(01)00003-7
18.
Held
,
M.
,
Lukács
,
G.
, and
Andor
,
L.
,
1994
, “
Pocket Machining Based on Contour-Parallel Tool Paths Generated by Means of Proximity Maps
,”
Comput. Aided Des.
,
26
(
3
), pp.
189
203
. 10.1016/0010-4485(94)90042-6
19.
Lai
,
W. S.
,
Faddis
,
T.
, and
Sorem
,
R.
,
2000
, “
Incremental Algorithms for Finding the Offset Distance and Minimum Passage Width in a Pocket Machining Toolpath Using the Voronoi Technique
,”
J. Mater. Process. Technol.
,
100
(
1–3
), pp.
30
35
. 10.1016/S0924-0136(99)00425-2
20.
Lee
,
C. S.
,
Phan
,
T. T.
, and
Kim
,
D. S.
,
2009
, “
2D Curve Offset Algorithm for Pockets with Islands Using a Vertex Offset
,”
Int. J. Precis. Eng. Manuf.
,
10
(
2
), pp.
127
135
. 10.1007/s12541-009-0037-9
21.
Kim
,
H. C.
,
2007
, “
Tool Path Modification for Optimized Pocket Milling
,”
Int. J. Prod. Res.
,
45
(
24
), pp.
5715
5729
. 10.1080/00207540600919340
22.
Molina-Carmona
,
R.
,
Jimeno
,
A.
, and
Rizo-Aideguier
,
R.
,
2007
, “
Morphological Offset Computing for Contour Pocketing
,”
J. Manuf. Sci. Eng. Trans. ASME
,
129
(
2
), pp.
400
406
. 10.1115/1.2540741
23.
Zhao
,
Z. Y.
,
Wang
,
C. Y.
,
Zhou
,
H. M.
, and
Qin
,
Z.
,
2007
, “
Pocketing Toolpath Optimization for Sharp Corners
,”
J. Mater. Process. Technol.
,
192
, pp.
175
180
. 10.1016/j.jmatprotec.2007.04.096
24.
Lin
,
Z. W.
,
Fu
,
J. Z.
,
Shen
,
H. Y.
, and
Yao
,
X. H.
,
2015
, “
Smooth Contour-Parallel Tool Path Generation for High-Speed Machining Through a Dual Offset Procedure
,”
Int. J. Adv. Manuf. Technol.
,
81
(
5–8
), pp.
1233
1245
. 10.1007/s00170-015-7275-z
25.
Pateloup
,
V.
,
Duc
,
E.
, and
Ray
,
P.
,
2004
, “
Corner Optimization for Pocket Machining
,”
Int. J. Mach. Tools Manuf.
,
44
(
12–13
), pp.
1343
1353
. 10.1016/j.ijmachtools.2004.04.011
26.
Pateloup
,
V.
,
Duc
,
E.
, and
Ray
,
P.
,
2010
, “
Bspline Approximation of Circle arc and Straight Line for Pocket Machining
,”
Comput. Aided Des.
,
42
(
9
), pp.
817
827
. 10.1016/j.cad.2010.05.003
27.
Bouard
,
M.
,
Pateloup
,
V.
, and
Armand
,
P.
,
2011
, “
Pocketing Toolpath Computation Using an Optimization Method
,”
Comput. Aided Des.
,
43
(
9
), pp.
1099
1109
. 10.1016/j.cad.2011.05.008
28.
Xu
,
J.
,
Ji
,
Y.
,
Sun
,
Y.
, and
Lee
,
Y.-S.
,
2018
, “
Spiral Tool Path Generation Method on Mesh Surfaces Guided by Radial Curves
,”
ASME J. Manuf. Sci. Eng.
,
140
(
7
), p.
071016
. 10.1115/1.4039918
29.
Bieterman
,
M. B.
, and
Sandstrom
,
D. R.
,
2003
, “
A Curvilinear Tool-Path Method for Pocket Machining
,”
J. Manuf. Sci. Eng. Transactions of the ASME
,
125
(
4
), pp.
709
715
. 10.1115/1.1596579
30.
Held
,
M.
, and
Spielberger
,
C.
,
2009
, “
A Smooth Spiral Tool Path for High Speed Machining of 2D Pockets
,”
Comput. Aided Des.
,
41
(
7
), pp.
539
550
. 10.1016/j.cad.2009.04.002
31.
Patel
,
D. D.
, and
Lalwani
,
D. I.
,
2017
, “
Quantitative Comparison of Pocket Geometry and Pocket Decomposition to Obtain Improved Spiral Tool Path: A Novel Approach
,”
J. Manuf. Sci. Eng. Trans. ASME
,
139
(
3
), p.
031020
. 10.1115/1.4034896
32.
Xu
,
K.
, and
Li
,
Y.
,
2019
, “
Digital Image Approach to Tool Path Generation for Surface Machining
,”
Int. J. Adv. Manuf. Technol.
,
101
(
9–12
), pp.
2547
2558
. 10.1007/s00170-018-3118-z
33.
Xu
,
K.
,
Li
,
Y.
, and
Xiang
,
B.
,
2018
, “
Image Processing-Based Contour Parallel Tool Path Optimization for Arbitrary Pocket Shape
,”
Int. J. Adv. Manuf. Technol.
,
102
(
5–8
), pp.
1
15
. 10.1007/s00170-018-3016-4
34.
Schaefer
,
S.
,
Mcphail
,
T.
, and
Warren
,
J.
,
2006
, “
Image Deformation Using Moving Least Squares
,”
ACM Siggraph
, pp.
533
540
. 10.1145/1179352.1141920
35.
Rezanejad
,
M.
and
Siddiqi
,
K.
,
2013
, “Flux Graphs for 2D Shape Analysis,”
Shape Perception in Human and Computer Vision
,
Springer
,
New York
, pp.
41
54
.
You do not currently have access to this content.