Abstract

Fast electrical discharge drilling is broadly used to manufacture small holes on molds, dies, filters, and automobile and aerospace components. Breakout is the event when the tool electrode reaches the opposite surface of the workpiece. When a breakout happens, the machining efficiency drops sharply and the process becomes unstable. To gain a deep understanding of the breakout process, this paper observed the gap phenomena before and after the breakout with cameras through a quartz glass flake. Experiments were conducted on the workpiece tilted to 45 deg. From the observation, it was found that the deformation of the electrode was not negligible. The electrode would vibrate or shake before and after the breakout. Side-gap sparks were common in the process, and even more were observed after the breakout. The fluid flow in the discharge gap and the side gap did not vanish immediately when a breakout happened and could still evacuate debris for a short period. The debris gradually accumulated as the fluid flow in the gap vanished. A series of simulations were conducted to study the fluid flow and debris movement after the breakout. And simulations were also performed to find the influence on electrode vibration of high-pressure flush fluid and discharge location. The results of simulations agreed well with the observed phenomena. From the observation and simulation results, the deformation or vibration of the electrode and the accumulation of debris were found to be the main factors that led to the low machining efficiency after the breakout.

References

1.
Ubaid
,
A. M.
,
Dweiri
,
F. T.
,
Aghdeab
,
S. H.
, and
Abdullah Al-Juboori
,
L.
,
2017
, “
Optimization of Electro Discharge Machining Process Parameters With Fuzzy Logic for Stainless Steel 304 (ASTM A240)
,”
ASME J. Manuf. Sci. Eng.
,
140
(
1
), p.
011013
. 10.1115/1.4038139
2.
Bartkowiak
,
T.
, and
Brown
,
C. A.
,
2017
, “
A Characterization of Process–Surface Texture Interactions in Micro-Electrical Discharge Machining Using Multiscale Curvature Tensor Analysis
,”
ASME J. Manuf. Sci. Eng.
,
140
(
2
), p.
021013
. 10.1115/1.4037601
3.
Heinz
,
K.
,
Kapoor
,
S. G.
,
DeVor
,
R. E.
, and
Surla
,
V.
,
2011
, “
An Investigation of Magnetic-Field-Assisted Material Removal in Micro-EDM for Nonmagnetic Materials
,”
ASME J. Manuf. Sci. Eng.
,
133
(
2
), p.
021002
. 10.1115/1.4003488
4.
Joshi
,
K.
,
Bhandarkar
,
U.
,
Samajdar
,
I.
, and
Joshi
,
S. S.
,
2018
, “
Microstructural Characterization of Thermal Damage on Silicon Wafers Sliced Using Wire-Electrical Discharge Machining
,”
ASME J. Manuf. Sci. Eng.
,
140
(
9
), p.
091001
. 10.1115/1.4039647
5.
Zulafif Rahim
,
M.
,
Ding
,
S.
, and
Mo
,
J.
,
2015
, “
Electrical Discharge Grinding of Polycrystalline Diamond—Effect of Machining Parameters and Finishing In-Feed
,”
ASME J. Manuf. Sci. Eng.
,
137
(
2
), p.
021017
. 10.1115/1.4029433
6.
Wang
,
J.
,
Han
,
F.
,
Cheng
,
G.
, and
Zhao
,
F.
,
2012
, “
Debris and Bubble Movements During Electrical Discharge Machining
,”
Int. J. Mach. Tools Manuf.
,
58
, pp.
11
18
. 10.1016/j.ijmachtools.2012.02.004
7.
Kitamura
,
T.
,
Kunieda
,
M.
, and
Abe
,
K.
,
2013
, “
High-Speed Imaging of EDM Gap Phenomena Using Transparent Electrodes
,”
Proc. CIRP
,
6
, pp.
314
319
. 10.1016/j.procir.2013.03.082
8.
Kitamura
,
T.
, and
Kunieda
,
M.
,
2014
, “
Clarification of EDM Gap Phenomena Using Transparent Electrodes
,”
CIRP Ann.
,
63
(
1
), pp.
213
216
. 10.1016/j.cirp.2014.03.059
9.
Kitamura
,
T.
,
Kunieda
,
M.
, and
Abe
,
K.
,
2015
, “
Observation of Relationship Between Bubbles and Discharge Locations in EDM Using Transparent Electrodes
,”
Precis. Eng.
,
40
, pp.
26
32
. 10.1016/j.precisioneng.2014.09.009
10.
Kunieda
,
M.
, and
Kitamura
,
T.
,
2018
, “
Observation of Difference of EDM Gap Phenomena in Water and Oil Using Transparent Electrode
,”
Proc. CIRP
,
68
, pp.
342
346
. 10.1016/j.procir.2017.12.065
11.
Mori
,
A.
,
Kunieda
,
M.
, and
Abe
,
K.
,
2016
, “
Clarification of Gap Phenomena in Wire EDM Using Transparent Electrodes
,”
Proc. CIRP
,
42
, pp.
601
605
. 10.1016/j.procir.2016.02.219
12.
Li
,
G.
,
Natsu
,
W.
, and
Yu
,
Z.
,
2018
, “
Study on Debris Behavior and its Influence on EDM Characteristics in Deep Micro-Hole Machining
,”
Proc. CIRP
,
68
, pp.
578
581
. 10.1016/j.procir.2017.12.117
13.
Kliuev
,
M.
,
Baumgart
,
C.
, and
Wegener
,
K.
,
2018
, “
Fluid Dynamics in Electrode Flushing Channel and Electrode-Workpiece Gap During EDM Drilling
,”
Proc. CIRP
,
68
, pp.
254
259
. 10.1016/j.procir.2017.12.058
14.
Wang
,
Y. Q.
,
Cao
,
M. R.
,
Yang
,
S. Q.
, and
Li
,
W. H.
,
2008
, “
Numerical Simulation of Liquid-Solid Two-Phase Flow Field in Discharge Gap of High-Speed Small Hole EDM Drilling
,”
Adv. Mater. Res.
,
53–54
, pp.
409
414
. 10.4028/www.scientific.net/AMR.53-54.409
15.
Mujumdar
,
S. S.
,
Curreli
,
D.
,
Kapoor
,
S. G.
, and
Ruzic
,
D.
,
2014
, “
A Model of Micro Electro-Discharge Machining Plasma Discharge in Deionized Water
,”
ASME J. Manuf. Sci. Eng.
,
136
(
3
), p.
031011
. 10.1115/1.4026298
16.
Pontelandolfo
,
P.
,
Haas
,
P.
, and
Perez
,
R.
,
2013
, “
Particle Hydrodynamics of the Electrical Discharge Machining Process. Part 2: Die Sinking Process
,”
Proc. CIRP
,
6
, pp.
47
52
. 10.1016/j.procir.2013.03.007
17.
Wang
,
J.
, and
Han
,
F.
,
2014
, “
Simulation Model of Debris and Bubble Movement in Electrode Jump of Electrical Discharge Machining
,”
Int. J. Adv. Manuf. Technol.
,
74
(
5–8
), pp.
591
598
. 10.1007/s00170-014-6008-z
18.
Wang
,
J.
, and
Han
,
F.
,
2014
, “
Simulation Model of Debris and Bubble Movement in Consecutive-Pulse Discharge of Electrical Discharge Machining
,”
Int. J. Mach. Tools Manuf.
,
77
, pp.
56
65
. 10.1016/j.ijmachtools.2013.10.007
19.
Paktinat
,
H.
, and
Amini
,
S.
,
2018
, “
Experiments and Finite Element Simulation of Ultrasonic Assisted Drilling
,”
ASME J. Manuf. Sci. Eng.
,
140
(
10
), p.
101002
. 10.1115/1.4040321
20.
Cattenone
,
A.
,
Morganti
,
S.
,
Alaimo
,
G.
, and
Auricchio
,
F.
,
2018
, “
Finite Element Analysis of Additive Manufacturing Based on Fused Deposition Modeling: Distortions Prediction and Comparison With Experimental Data
,”
ASME J. Manuf. Sci. Eng.
,
141
(
1
), p.
011010
. 10.1115/1.4041626
21.
Kunieda
,
M.
,
Tohi
,
M.
, and
Ohsako
,
Y.
,
2003
, “
Reaction Forces Observed in Pulse Discharges of EDM
,”
Int. J. Electr. Mach.
,
8
(0), pp.
51
56
. 10.2526/ijem.8.51
22.
Tomura
,
S.
, and
Kunieda
,
M.
,
2009
, “
Analysis of Electromagnetic Force in Wire-EDM
,”
Precis. Eng.
,
33
(
3
), pp.
255
262
. 10.1016/j.precisioneng.2008.07.004
23.
Zhang
,
M.
,
Zhang
,
Q.
,
Dou
,
L.
,
Liu
,
Q.
, and
Zhu
,
G.
,
2016
, “
Research on the Impulse Force in Electrical Discharge Machining Using a New Measuring Method
,”
Int. J. Adv. Manuf. Technol.
,
82
(
1–4
), pp.
463
471
. 10.1007/s00170-015-7060-z
You do not currently have access to this content.