Abstract

Local corner smoothing method is commonly adopted to smooth linear (G01) tool path segments in computer numerical control (CNC) machining to realize continuous motion at transition corners. However, because of the highly non-linear relation between the arc-length and the spline parameter, and the challenge to synchronize the tool tip position and tool orientation, real-time and high-order continuous five-axis tool path smoothing and interpolation algorithms have not been well studied. This paper proposes a real-time C3 continuous corner smoothing and interpolation algorithm for five-axis machine tools. The transition corners of the tool tip position and tool orientation are analytically smoothed in the workpiece coordinate system (WCS) and the machine coordinate system (MCS) by C3 continuous PH splines, respectively. The maximum deviation errors of the smoothed tool tip position and the tool orientation are both constrained in the WCS. An analytical synchronization algorithm is developed to guarantee the motion variance of the smoothed tool orientation related to the tool tip displacement is also C3 continuous. The corresponding real-time interpolation method is developed with a continuous and peak-constrained jerk. Simulation results verify that the maximum deviation errors caused by the tool path smoothing algorithm are constrained, and continuous acceleration and jerk of each axis are achieved along the entire tool path. Comparisons demonstrate that the proposed algorithms achieve lower amplitude and variance of acceleration and jerk when compared with existing methods. Experiments show that the proposed five-axis corner smoothing and interpolation algorithms are serially executed in real-time with 0.5-ms cycle.

References

References
1.
Tajima
,
S.
, and
Sencer
,
B.
,
2016
, “
Kinematic Corner Smoothing for High Speed Machine Tools
,”
Int. J. Mach. Tools Manuf.
,
108
, pp.
27
43
. 10.1016/j.ijmachtools.2016.05.009
2.
Liu
,
Y.
,
Wan
,
M.
,
Qin
,
X.
,
Xiao
,
Q.
, and
Zhang
,
W.
,
2019
, “
Fir Filter-Based Continuous Interpolation of G01 Commands With Bounded Axial and Tangential Kinematics in Industrial Five-Axis Machine Tools
,”
Int. J. Mech. Sci.
,
169
, pp.
105325
. 10.1016/j.ijmecsci.2019.105325
3.
Erkorkmaz
,
K.
, and
Altintas
,
Y.
,
2005
, “
Quintic Spline Interpolation With Minimal Feed Fluctuation
,”
ASME J. Manuf. Sci. Eng.
,
127
(
2
), pp.
339
349
. 10.1115/1.1830493
4.
Erkorkmaz
,
K.
,
2015
, “
Efficient Fitting of the Feed Correction Polynomial for Real-Time Spline Interpolation
,”
ASME J. Manuf. Sci. Eng.
,
137
(
4
), p.
044501
. 10.1115/1.4030300
5.
Tsai
,
M.
, and
Cheng
,
C.
,
2003
, “
A Real-Time Predictor-Corrector Interpolator for CNC Machining
,”
ASME J. Manuf. Sci. Eng.
,
125
(
3
), pp.
449
460
. 10.1115/1.1578670
6.
Chen
,
Z. C.
, and
Khan
,
M. A.
,
2012
, “
Piecewise B-Spline Tool Paths With the Arc-Length Parameter and Their Application on High Feed, Accurate CNC Milling of Free-Form Profiles
,”
ASME J. Manuf. Sci. Eng.
,
134
(
3
), p.
031007
. 10.1115/1.4006551
7.
Yang
,
J.
,
Chen
,
Y.
,
Chen
,
Y.
, and
Zhang
,
D.
,
2015
, “
A Tool Path Generation and Contour Error Estimation Method for Four-Axis Serial Machines
,”
Mechatronics
,
31
, pp.
78
88
. 10.1016/j.mechatronics.2015.03.001
8.
Yuen
,
A.
,
Zhang
,
K.
, and
Altintas
,
Y.
,
2013
, “
Smooth Trajectory Generation for Five-Axis Machine Tools
,”
Int. J. Mach. Tools Manuf.
,
71
, pp.
11
19
. 10.1016/j.ijmachtools.2013.04.002
9.
Yang
,
J.
, and
Altintas
,
Y.
,
2013
, “
Generalized Kinematics of Five-Axis Serial Machines with Non-Singular Tool Path Generation
,”
Int. J. Mach. Tools Manuf.
,
75
, pp.
119
132
. 10.1016/j.ijmachtools.2013.09.002
10.
Lu
,
Y.
,
Ding
,
Y.
, and
Zhu
,
L.
,
2016
, “
Smooth Tool Path Optimization for Flank Milling Based on the Gradient-Based Differential Evolution Method
,”
ASME J. Manuf. Sci. Eng.
,
138
(
8
), p.
081009
. 10.1115/1.4032969
11.
Sun
,
Y.
,
Zhao
,
Y.
,
Bao
,
Y.
, and
Guo
,
D.
,
2014
, “
A Novel Adaptive-Feedrate Interpolation Method for Nurbs Tool Path With Drive Constraints
,”
Int. J. Mach. Tools Manuf.
,
77
, pp.
74
81
. 10.1016/j.ijmachtools.2013.11.002
12.
Pateloup
,
V.
,
Duc
,
E.
, and
Ray
,
P.
,
2010
, “
Bspline Approximation of Circle Arc and Straight Line for Pocket Machining
,”
Comput.-Aided Des.
,
42
(
9
), pp.
817
827
. 10.1016/j.cad.2010.05.003
13.
Zhao
,
H.
,
Zhu
,
L.
, and
Ding
,
H.
,
2013
, “
A Real-Time Look-Ahead Interpolation Methodology With Curvature-Continuous B-Spline Transition Scheme for CNC Machining of Short Line Segments
,”
Int. J. Mach. Tools Manuf.
,
65
, pp.
88
98
. 10.1016/j.ijmachtools.2012.10.005
14.
Fan
,
W.
,
Lee
,
C.
, and
Chen
,
J.
,
2015
, “
A Realtime Curvature-Smooth Interpolation Scheme and Motion Planning for CNC Machining of Short Line Segments
,”
Int. J. Mach. Tools Manuf.
,
96
, pp.
27
46
. 10.1016/j.ijmachtools.2015.04.009
15.
Sencer
,
B.
,
Ishizaki
,
K.
, and
Shamoto
,
E.
,
2015
, “
A Curvature Optimal Sharp Corner Smoothing Algorithm for High-Speed Feed Motion Generation of Nc Systems Along Linear Tool Paths
,”
Int. J. Adv. Manuf. Technol.
,
76
(
9–12
), pp.
1977
1992
. 10.1007/s00170-014-6386-2
16.
Hu
,
Q.
,
Chen
,
Y.
,
Jin
,
X.
, and
Yang
,
J.
,
2019
, “
A Real-Time C3 Continuous Local Corner Smoothing and Interpolation Algorithm for CNC Machine Tools
,”
ASME J. Manuf. Sci. Eng.
,
141
(
4
), p.
041004
. 10.1115/1.4042606
17.
Hu
,
Q.
,
Chen
,
Y.
,
Yang
,
J.
, and
Zhang
,
D.
,
2018
, “
An Analytical C3 Continuous Local Corner Smoothing Algorithm for Four-Axis Computer Numerical Control Machine Tools
,”
ASME J. Manuf. Sci. Eng.
,
140
(
5
), p.
051004
. 10.1115/1.4039116
18.
Beudaert
,
X.
,
Lavernhe
,
S.
, and
Tournier
,
C.
,
2013
, “
5-Axis Local Corner Rounding of Linear Tool Path Discontinuities
,”
Int. J. Mach. Tools Manuf.
,
73
, pp.
9
16
. 10.1016/j.ijmachtools.2013.05.008
19.
Tulsyan
,
S.
, and
Altintas
,
Y.
,
2015
, “
Local Toolpath Smoothing for Five-Axis Machine Tools
,”
Int. J. Mach. Tools Manuf.
,
96
, pp.
15
26
. 10.1016/j.ijmachtools.2015.04.014
20.
Bi
,
Q.
,
Shi
,
J.
,
Wang
,
Y.
,
Zhu
,
L.
, and
Ding
,
H.
,
2015
, “
Analytical Curvature-Continuous Dual-Bézier Corner Transition for Five-Axis Linear Tool Path
,”
Int. J. Mach. Tools Manuf.
,
91
, pp.
96
108
. 10.1016/j.ijmachtools.2015.02.002
21.
Huang
,
J.
,
Du
,
X.
, and
Zhu
,
L.
,
2018
, “
Real-Time Local Smoothing for Five-Axis Linear Toolpath Considering Smoothing Error Constraints
,”
Int. J. Mach. Tools Manuf.
,
124
, pp.
67
79
. 10.1016/j.ijmachtools.2017.10.001
22.
Yang
,
J.
, and
Yuen
,
A.
,
2017
, “
An Analytical Local Corner Smoothing Algorithm for Five-Axis CNC Machining
,”
Int. J. Mach. Tools Manuf.
,
123
, pp.
22
35
. 10.1016/j.ijmachtools.2017.07.007
23.
Shi
,
J.
,
Bi
,
Q.
,
Wang
,
Y.
, and
Liu
,
G.
,
2014
, “Development of Real-Time Look-Ahead Methodology Based on Quintic PH Curve with G2 Continuity for High-Speed Machining,”
Applied Mechanics and Materials
, Vol.
464
,
G.
Yang
, ed.,
Trans Tech Publication
,
Switzerland
, pp.
258
264
.
24.
Shi
,
J.
,
Bi
,
Q.
,
Zhu
,
L.
, and
Wang
,
Y.
,
2015
, “
Corner Rounding of Linear Five-Axis Tool Path by Dual PH Curves Blending
,”
Int. J. Mach. Tools Manuf.
,
88
, pp.
223
236
. 10.1016/j.ijmachtools.2014.09.007
25.
Farouki
,
R. T.
,
2008
,
Pythagorean–Hodograph Curves
,
Springer
,
Berlin
.
26.
Farouki
,
R. T.
,
2014
, “
Construction of G2 Rounded Corners With Pythagorean-Hodograph Curves
,”
Comput. Aided Geom. Des.
,
31
(
2
), pp.
127
139
. 10.1016/j.cagd.2014.02.002
27.
Jahanpour
,
J.
, and
Imani
,
B.
,
2008
, “
Real-Time PH Curve CNC Interpolators for High Speed Cornering
,”
Int. J. Adv. Manuf. Technol.
,
39
(
3–4
), pp.
302
316
. 10.1007/s00170-007-1217-3
28.
Yeung
,
C.
,
Altintas
,
Y.
, and
Erkorkmaz
,
K.
,
2006
, “
Virtual CNC System. Part I. System Architecture
,”
Int. J. Mach. Tools Manuf.
,
46
(
10
), pp.
1107
1123
. 10.1016/j.ijmachtools.2005.08.002
29.
Sencer
,
B.
,
Altintas
,
Y.
, and
Croft
,
E.
,
2009
, “
Modeling and Control of Contouring Errors for Five-Axis Machine Tools—Part I: Modeling
,”
ASME J. Manuf. Sci. Eng.
,
131
(
3
), p.
031006
. 10.1115/1.3123335
30.
Erkorkmaz
,
K.
, and
Altintas
,
Y.
,
2001
, “
High Speed CNC System Design. Part I: Jerk Limited Trajectory Generation and Quintic Spline Interpolation
,”
Int. J. Mach. Tools Manuf.
,
41
(
9
), pp.
1323
1345
. 10.1016/S0890-6955(01)00002-5
31.
Yang
,
J.
,
Zhang
,
H. T.
, and
Ding
,
H.
,
2017
, “
Contouring Error Control of the Tool Center Point Function for Five-Axis Machine Tools Based on Model Predictive Control
,”
Int. J. Adv. Manuf. Technol.
,
88
(
9–12
), pp.
2909
2919
. 10.1007/s00170-016-8979-4
You do not currently have access to this content.