Abstract

This paper presents a novel method to eliminate cosine error in precision concave and convex surface measurement by integrating a displacement probe in a precision spindle. Cosine error in surface profile measurement comes from an angular misalignment between the measurement axis and the axis of motion and negatively affects the measurement accuracy, especially in optical surface measurements. A corrective multiplier can solve this problem for spherical surface measurement, but cosine error cannot be eliminated in the case of complex optical surface measurement because current tools do not measure such surfaces along the direction normal to the measurement plane. Because the displacement probe is placed on the spindle axis, the spindle error motion will affect the shape precision and surface roughness measurement of optical components such as mirrors and lenses, and the displacement probe will measure a combination of the spindle error motion and the geometry of optical surfaces. Here, the one-dimensional concave, convex, and hollow measurement targets were used, and cosine error was fundamentally eliminated by aligning the probe on the spindle always normal to the measured surface, and compensation was made for the aerostatic bearing spindle rotational error obtained by the reversal method. The results show that this proposed measurement method cannot only eliminate cosine error but also scan the large area quickly and conveniently. In addition, measurement uncertainty and further consideration for future work were discussed.

References

References
1.
Lasemi
,
A.
,
Xue
,
D.
, and
Gu
,
P.
,
2010
, “
Recent Development in CNC Machining of Freeform Surfaces: A State-of-the-Art Review
,”
Comp.-Aided Des.
,
42
(
7
), pp.
641
654
. 10.1016/j.cad.2010.04.002
2.
Lin
,
R.-S.
, and
Koren
,
Y.
,
1996
, “
Efficient Tool-Path Planning for Machining Free-for Surfaces
,”
Trans. ASME
,
118
(
1
), pp.
20
28
.
3.
Suresh
,
K.
, and
Yang
,
D.
,
1994
, “
Constant Scallop-Height Machining of FreeForm Surfaces
,”
ASME J. Eng. Ind.
,
116
(
2
), pp.
253
259
. 10.1115/1.2901938
4.
Kim
,
J.
, and
Lee
,
S.-K.
,
2016
, “
Micro-Patterning Technique Using a Rotating Cutting Tool Controlled by an Electromagnetic Actuator
,”
Int. J. Mach. Tools Manuf.
,
101
, pp.
52
64
. 10.1016/j.ijmachtools.2015.11.005
5.
Kim
,
J.
,
Zhao
,
S.
,
Kim
,
G.
, and
Lee
,
S.-K.
,
2013
, “
Rolling Bearing-Suspended Spindle Run-Out Control Using Repetitive Control and Adaptive Feedforward Cancelation
,”
Int. J. Precis. Eng. Manuf.
,
14
(
12
), pp.
2171
2178
. 10.1007/s12541-013-0294-5
6.
Gao
,
W.
,
2010
,
Precision Nanometrology: Sensors and Measuring Systems for Nanomanufacturing
,
Springer
,
New York
.
7.
Simunovic
,
G.
,
Svalina
,
I.
,
Simunovic
,
K.
,
Saric
,
T.
,
Havrlisan
,
S.
, and
Vukelic
,
D.
,
2016
, “
Surface Roughness Assessing Based on Digital Image Features
,”
Adv. Prod. Eng. Manag.
,
11
(
2
), pp.
93
104
. 10.14743/apem2016.2.212
8.
Gordon
,
H. R.
, and
Wang
,
M.
,
1992
, “
Surface Roughness Considerations for Atmospheric Correction of Ocean Color Sensors. I: The Rayleigh-Scattering Component
,”
Appl. Opt.
,
31
(
21
), pp.
4247
4260
. 10.1364/AO.31.004247
9.
Harvey
,
J. E.
,
Schröder
,
S.
,
Choi
,
N.
, and
Duparré
,
A.
,
2012
, “
Total Integrated Scatter From Surfaces With Arbitrary Roughness, Correlation Widths, and Incident Angles
,”
Opt. Eng.
,
51
(
1
), p.
013402
. 10.1117/1.OE.51.1.013402
10.
Bennett
,
H. E.
, and
Porteus
,
J. O.
,
1961
, “
Relation Between Surface Roughness and Specular Reflectance at Normal Incidence
,”
J. Opt. Soc. Am.
,
51
(
2
), pp.
123
129
. 10.1364/JOSA.51.000123
11.
Davies
,
H.
,
1954
, “
The Reflection of Electromagnetic Waves From a Rough Surface
,”
Proc. IEEE. Pt. III
,
101
(
7
), pp.
209
214
.
12.
Bennett
,
H. E.
,
1963
, “
Specular Reflectance of Aluminized Ground Glass and the Height Distribution of Surface Irregularities
,”
J. Opt. Soc. Am.
,
53
(
12
), pp.
1389
1394
. 10.1364/JOSA.53.001389
13.
Qian
,
S.
, and
Takacs
,
P.
,
2012
, “Nano-Accuracy Surface Figure Metrology of Precision Optics,”
Modern Metrology Concerns
,
L.
Cocco
, ed.,
InTech
. https://www.intechopen.com/books/modern-metrology-concerns/nanoaccuracy-surface-figure-metrology-of-precision-optics, Accessed January 27, 2020.
14.
BS ISO 230-10:2011
,
2011
,
Test Code for Machine Tools Part 10: Determination of the Measuring Performance of Probing Systems of Numerically Controlled Machine Tools
,
International Standard
.
15.
Cai
,
Z.
,
Luo
,
Z.
, and
Liu
,
H.
,
2019
, “
Probe Error Analysis of Articulated Arm Coordinate Measuring Machine
,”
Proceedings of SPIE 11053, Tenth International Symposium on Precision Engineering Measurements and Instrumentation
, p.
1105339
.
16.
Berger
,
G.
,
2016
,
Non-contact 3D Scanning Approach to Solve Measurement Challenges
,
World Metrology Day
,
Singapore
.
17.
Kang
,
J.-H.
,
Lee
,
C.
,
Joo
,
J.-Y.
, and
Lee
,
S.-K.
,
2011
, “
Phase-Locked Loop Based on Machine Surface Topography Measurement Using Lensed Fibers
,”
Appl. Opt.
,
50
(
4
), pp.
460
467
. 10.1364/AO.50.000460
18.
El-Zaiat
,
S. Y.
,
Missotten
,
L.
, and
Engelen
,
J.
,
1991
, “
Radius of Curvature Measurement by Twyman-Green’s Interferometer
,”
Opt. Lasers Eng.
,
15
(
3
), pp.
203
208
. 10.1016/0143-8166(91)90078-8
19.
Ennos
,
A. E.
, and
Virdee
,
M. S.
,
1982
, “
High Accuracy Profile Measurement of Quasi-Conical Mirror Surfaces by Laser Autocollimation
,”
Precis. Eng.
,
4
(
1
), pp.
5
8
. 10.1016/0141-6359(82)90106-4
20.
Rosete-Aguilar
,
M.
, and
Diaz-Uribe
,
R.
,
1993
, “
Profile Testing of Spherical Surfaces by Laser Deflectometry
,”
Appl. Opt.
,
32
(
25
), pp.
4690
4697
. 10.1364/AO.32.004690
21.
Lee
,
J. C.
,
Noh
,
Y. J.
,
Ari
,
Y.
,
Gao
,
W.
, and
Park
,
C. H.
,
2009
, “
Precision Measurement of Cylinder Surface Profile on an Ultra-Precision Machine Tool
,”
Meas. Sci. Rev.
,
9
(
2
), pp.
49
52
.
22.
Hou
,
M.
,
Qiu
,
L.
,
Zhao
,
W.
,
Wang
,
F.
,
Liu
,
E.
, and
Ji
,
L.
,
2014
, “
Single-Step Spatial Rotational Error Separation Technique for the Ultraprecision Measurement of Surface Profiles
,”
Appl. Opt.
,
53
(
3
), pp.
487
495
. 10.1364/AO.53.000487
23.
Zhang
,
Y.
,
Zhang
,
Z.
,
Li
,
Y.
,
Zhou
,
W.
,
He
,
Y.
, and
Li
,
W.
,
2019
, “
Phase Measuring Method and Error Compensation in 3D Profile Measurement
,”
Proceedings of SPIE 11053, Tenth International Symposium on Precision Engineering Measurements and Instrumentation
.
24.
Donaldson
,
R. R.
,
1972
, “
A Simple Method for Separating Spindle Error From Test Ball Roundness Error
,”
Ann. CIRP
,
21
(
1
), pp.
125
126
.
25.
Marsh
,
E. R.
,
2010
,
Precision Spindle Metrology
,
DEStech Publication Inc.
,
Lancaster, USA.
26.
Muralikrishnan
,
B.
, and
Raja
,
J.
,
2009
,
Computational Surface and Roundness Metrology
,
Springer
,
New York
.
27.
Bryan
,
J.
,
Clouser
,
R.
, and
Holland
,
E.
,
1967
, “
Spindle Accuracy
,”
Amer Mechanist
, pp.
149
164
.
28.
Tan
,
B.
,
Mao
,
X.
,
Liu
,
H.
,
Li
,
B.
,
He
,
S.
,
Peng
,
F.
, and
Yin
,
L.
,
2014
,”
Int. J. Mach. Tools Manuf.
,
82–83
, pp.
11
20
. 10.1016/j.ijmachtools.2014.03.002
29.
Li
,
D.
,
Jiang
,
X.
,
Tong
,
Z.
, and
Blunt
,
L.
,
2019
, “
Development and Application of Interferometric On-Machine Surface Measurement for Ultraprecision Turning Process
,”
ASME J. Manuf. Sci. Eng.
,
141
(
1
), p.
014502
. 10.1115/1.4041627
You do not currently have access to this content.