Abstract

The objective of this review paper is to summarize the current status and identify the knowledge gaps in ceramic binder jetting additive manufacturing, with a particular focus on density. This paper begins with an overview of ceramic binder jetting. Then, it discusses different aspects of density, including various terminologies, measurement methods, and achieved values. Afterward, it reviews two categories of techniques to increase the part density: material preparation techniques (powder granulation, mixing powders of different sizes, using slurry feedstock, and mixing different materials) and postprocessing techniques (sintering, chemical reaction, infiltration, and isostatic pressing). Finally, it presents the knowledge gaps in the literature.

References

References
1.
Klocke
,
F.
,
1997
, “
Modern Approaches for the Production of Ceramic Components
,”
J. Eur. Ceram. Soc.
,
17
(
2–3
), pp.
457
465
. 10.1016/S0955-2219(96)00163-X
2.
Kremers
,
H. M.
,
Larson
,
D. R.
,
Crowson
,
C. S.
,
Kremers
,
W. K.
,
Washington
,
R. E.
,
Steiner
,
C. A.
,
Jiranek
,
W. A.
, and
Berry
,
D. J.
,
2014
, “
Prevalence of Total Hip and Knee Replacement in the United States
,”
J. Bone Jt. Surg. Am.
,
97
(
17
), pp.
1386
1397
. 10.2106/JBJS.N.01141
3.
Bose
,
S.
, and
Tarafder
,
S.
,
2012
, “
Calcium Phosphate Ceramic Systems in Growth Factor and Drug Delivery for Bone Tissue Engineering: A Review
,”
Acta Biomater.
,
8
(
4
), pp.
1401
1421
. 10.1016/j.actbio.2011.11.017
4.
Gmeiner
,
R.
,
Deisinger
,
U.
,
Schönherr
,
J.
,
Lechner
,
B.
,
Detsch
,
R.
,
Boccaccini
,
A. R.
, and
Stampfl
,
J.
,
2015
, “
Additive Manufacturing of Bioactive Glasses and Silicate Bioceramics
,”
J. Ceram. Sci. Technol.
,
6
(
2
), pp.
75
86
. 10.4416/JCST2015-00001
5.
ASTM International
,
2015
, “
ISO/ASTM 52900:2015—Additive Manufacturing—General Principles—Terminology
,”
ASTM International
,
West Conshohocken, PA
.
6.
Cima
,
M. J.
,
Sachs
,
E.
,
Fan
,
T.
,
Michaels
,
S. P.
,
Khanuja
,
S.
,
Lauder
,
A.
,
Lee
,
S.-J. J.
,
Brancazio
,
D.
,
Curodeau
,
A.
, and
Tuerck
,
H.
,
1993
, “
Three-Dimensional Printing Techniques
,” Patent No. US5387380A.
7.
Sachs
,
E.
,
Cima
,
M.
, and
Cornie
,
J.
,
1990
, “
Three Dimensional Printing: Rapid Tooling and Prototypes Directly From CAD Representation
,”
Solid Freeform Fabrication Symposium
,
Austin, TX
,
Aug. 6–8
, pp.
27
47
.
8.
Chua
,
C. K.
, and
Leong
,
K. F.
,
2014
, “
3D Printing and Additive Manufacturing: Principles and Applications
,”
World Scientific
,
Singapore
.
9.
Chua
,
C. K.
,
Leong
,
K. F.
, and
Lim
,
C. S.
,
2010
, “
Rapid Prototyping: Principles and Applications
,”
World Scientific
,
Singapore
.
10.
Chua
,
C. K.
,
Leong
,
K. F.
, and
Lim
,
C. S.
,
2003
, “
Rapid Prototyping: Principles and Applications
,”
World Scientific
,
Singapore
.
11.
ExOne
, “
History | ExOne
,” https://www.exone.com/About-ExOne/History, Accessed February 9, 2019.
12.
Voxeljet
, “
Company History | Voxeljet 3D Printing Solutions
,” https://www.voxeljet.com/company/company-history/, Accessed February 9, 2019.
13.
MicroJet
, “
About MicroJet
,” http://www.microjet.com.tw/en/about/#. Accessed February 9, 2019.
14.
TCT Magazine
, “
Production Ready—Desktop Metal Prepares to Unleash Its Production System—TCT Magazine
,” https://www.tctmagazine.com/3d-printing-news/desktop-metal-unleashes-production-system/, Accessed February 9, 2019.
15.
TCT Magazine
, “
Digital Metal 3D Printing: The Smaller, the Better—TCT Magazine
,” https://www.tctmagazine.com/tct-events/tct-show-uk/digital-metal-metal-3d-printing-the-smaller-the-better/, Accessed February 10, 2019.
16.
Cima
,
M. J.
, and
Sachs
,
E. M.
,
1991
, “
Three Dimensional Printing: Form, Materials, and Performance
,”
Solid Freeform Fabrication Symposium
,
Austin, TX
,
Aug. 12–14
, pp.
187
194
.
17.
Cima
,
M.
,
Lauder
,
A.
,
Khanuja
,
S.
, and
Sachs
,
E. M.
,
1992
, “
Microstructural Elements of Components Derived From 3D Printing
,”
Solid Freeform Fabrication Symposium
,
Austin, TX
,
Aug. 3–5
, pp.
220
227
.
18.
Sachs
,
E.
,
Cima
,
M.
,
Williams
,
P.
,
Brancazio
,
D.
, and
Cornie
,
J.
,
1992
, “
Three Dimensional Printing: Rapid Tooling and Prototypes Directly From a CAD Model
,”
J. Eng. Ind.
,
114
(
4
), pp.
481
488
. 10.1115/1.2900701
19.
Sachs
,
E.
,
Cima
,
M.
,
Cornie
,
J.
,
Brancazio
,
D.
,
Bredt
,
J.
,
Curodeau
,
A.
,
Fan
,
T.
,
Khanuja
,
S.
,
Lauder
,
A.
,
Lee
,
J.
, and
Michaels
,
S.
,
1993
, “
Three-Dimensional Printing: The Physics and Implications of Additive Manufacturing
,”
CIRP Ann.
,
42
(
1
), pp.
257
260
. 10.1016/S0007-8506(07)62438-X
20.
Sachs
,
E. M.
,
2000
, “
Powder Dispensing Apparatus Using Vibration
,” US Patent No. US6036777A.
21.
Perrin
,
S. E.
,
1991
, “
Control of Thin Layer Powder Packing Density : Effects of Applied Vibration
,”
Bachelor thesis
,
Massachusetts Institute of Technology
,
Cambridge, MA
.
22.
Holman
,
R. K.
,
Cima
,
M. J.
,
Uhland
,
S. A.
, and
Sachs
,
E.
,
2002
, “
Spreading and Infiltration of Inkjet-Printed Polymer Solution Droplets on a Porous Substrate
,”
J. Colloid Interface Sci.
,
249
(
2
), pp.
432
440
. 10.1006/jcis.2002.8225
23.
Moon
,
J.
,
Grau
,
J. E.
,
Knezevic
,
V.
,
Cima
,
M. J.
, and
Sachs
,
E. M.
,
2002
, “
Ink-Jet Printing of Binders for Ceramic Components
,”
J. Am. Ceram. Soc.
,
85
(
4
), pp.
755
762
. 10.1111/j.1151-2916.2002.tb00168.x
24.
Grau
,
J.
,
Moon
,
J.
,
Uhland
,
S.
,
Cima
,
M.
, and
Sachs
,
E.
,
1997
, “
High Green Density Ceramic Components Fabricated by the Slurry-Based 3DP Process
,”
Solid Freeform Fabrication Symposium
,
Austin, TX
,
Aug. 11–13
, pp.
371
379
.
25.
Uhland
,
S. A.
,
Holman
,
R. K.
,
Cima
,
M. J.
,
Sachs
,
E.
, and
Enokido
,
Y.
,
1998
, “
New Process and Materials Developments in 3-Dimensional Printing, 3DPTM
,”
MRS Proceedings
,
Boston, MA
,
Apr. 13–15
, pp.
153
158
.
26.
Grau
,
J. E.
,
1998
, “
Fabrication of Engineered Ceramic Components by the Slurry-Based Three Dimensional Printing Process
,”
PhD thesis
,
Massachusetts Institute of Technology
,
Cambridge, MA
.
27.
Cima
,
M. J.
,
Wang
,
H.-R.
,
Cima
,
M. J.
,
Oliveira
,
M.
,
Wang
,
H. R.
,
Sachs
,
E.
, and
Holman
,
R.
,
2001
, “
Slurry-Based 3DP and Fine Ceramic Components
,”
Solid Freeform Fabrication Symposium
,
Austin, TX
,
Aug. 6–8
, pp.
216
223
.
28.
Holman Richard
,
K.
,
2001
, “
Effects of the Polymeric Binder System in Slurry-Based Three Dimensional Printing of Ceramics
,”
PhD thesis
,
Massachusetts Institute of Technology
,
Cambridge, MA
.
29.
Wang
,
H. R.
,
2005
, “
Gradient-Index (GRIN) Lenses by Slurry-Based Three-Dimensional Printing (S-3DP)
,”
PhD thesis
,
Massachusetts Institute of Technology
,
Cambridge, MA
.
30.
Grau
,
J. E.
,
Uhland
,
S. A.
,
Moon
,
J.
,
Cima
,
M. J.
, and
Sachs
,
E. M.
,
2004
, “
Controlled Cracking of Multilayer Ceramic Bodies
,”
J. Am. Ceram. Soc.
,
82
(
8
), pp.
2080
2086
. 10.1111/j.1151-2916.1999.tb02044.x
31.
Holman
,
R. K.
,
Uhland
,
S. A.
,
Cima
,
M. J.
, and
Sachs
,
E.
,
2002
, “
Surface Adsorption Effects in the Inkjet Printing of an Aqueous Polymer Solution on a Porous Oxide Ceramic Substrate
,”
J. Colloid Interface Sci.
,
247
(
2
), pp.
266
274
. 10.1006/jcis.2001.8117
32.
Lauder
,
A. J.
,
1992
, “
Microstructure and Particle Arrangement in Three Dimensional Printing
,”
Master thesis
,
Massachusetts Institute of Technology
,
Cambridge, MA
.
33.
Oliveira
,
M. A.
,
2002
, “
Slurry Based Three Dimensional Printing (S-3DP) of Tungsten Carbide Cobalt
,”
PhD thesis
,
Massachusetts Institute of Technology
,
Cambridge, MA
.
34.
Cima
,
M. J.
,
Sachs
,
E. M.
,
Cima
,
L. G.
,
Yoo
,
J.
,
Khanuja
,
S.
,
Borland
,
S. W.
,
Wu
,
B.
, and
Giordano
,
R. A.
,
1994
, “
Computer-Derived Microstructures by 3D Printing: Bio-and Structural Materials
,”
Solid Freeform Fabrication Symposium
,
Austin, TX
,
Aug. 8–10
, pp.
181
190
.
35.
Seitz
,
H.
,
Rieder
,
W.
,
Irsen
,
S.
,
Leukers
,
B.
, and
Tille
,
C.
,
2005
, “
Three-Dimensional Printing of Porous Ceramic Scaffolds for Bone Tissue Engineering
,”
J. Biomed. Mater. Res., Part B
,
74
(
2
), pp.
782
788
. 10.1002/jbm.b.30291
36.
Du
,
W.
,
Ren
,
X.
,
Ma
,
C.
, and
Pei
,
Z.
,
2017
, “
Binder Jetting Additive Manufacturing of Ceramics: A Literature Review
,”
ASME 2017 International Mechanical Engineering Congress and Exposition
,
Tampa, FL
,
Nov. 5–8
, pp.
1
12
.
37.
Zocca
,
A.
,
Lima
,
P.
, and
Gunster
,
J.
,
2017
, “
LSD-Based 3D Printing of Alumina Ceramics
,”
J. Ceram. Sci. Technol.
,
8
(
1
), pp.
141
148
. 10.4416/JCST2016-00103
38.
Zocca
,
A.
,
Colombo
,
P.
,
Gomes
,
C. M.
, and
Günster
,
J.
,
2015
, “
Additive Manufacturing of Ceramics: Issues, Potentialities, and Opportunities
,”
J. Am. Ceram. Soc.
,
98
(
7
), pp.
1983
2001
. 10.1111/jace.13700
39.
Travitzky
,
N.
,
Bonet
,
A.
,
Dermeik
,
B.
,
Fey
,
T.
,
Filbert-Demut
,
I.
,
Schlier
,
L.
,
Schlordt
,
T.
, and
Greil
,
P.
,
2014
, “
Additive Manufacturing of Ceramic-Based Materials
,”
Adv. Eng. Mater.
,
16
(
6
), pp.
729
754
. 10.1002/adem.201400097
40.
Jafari
,
M. A.
,
Han
,
W.
,
Mohammadi
,
F.
,
Safari
,
A.
,
Danforth
,
S. C.
, and
Langrana
,
N.
,
2000
, “
A Novel System for Fused Deposition of Advanced Multiple Ceramics
,”
Rapid Prototyp. J.
,
6
(
3
), pp.
161
175
. 10.1108/13552540010337047
41.
Wang
,
F.
,
Mei
,
J.
,
Jiang
,
H.
, and
Wu
,
X.
,
2007
, “
Laser Fabrication of Ti6Al4 V/TiC Composites Using Simultaneous Powder and Wire Feed
,”
Mater. Sci. Eng. A
,
445
, pp.
461
466
. 10.1016/j.msea.2006.09.093
42.
Balla
,
V. K.
,
Bose
,
S.
, and
Bandyopadhyay
,
A.
,
2008
, “
Processing of Bulk Alumina Ceramics Using Laser Engineered Net Shaping
,”
Int. J. Appl. Ceram. Technol.
,
5
(
3
), pp.
234
242
. 10.1111/j.1744-7402.2008.02202.x
43.
Dong
,
C.
,
1990
, “
Binder Removal in Ceramics
,”
PhD thesis
,
Massachusetts Institute of Technology
,
Cambridge, MA
.
44.
Moon
,
J.
,
Caballero
,
A. C.
,
Hozer
,
L.
,
Chiang
,
Y.-M.
, and
Cima
,
M. J.
,
2001
, “
Fabrication of Functionally Graded Reaction Infiltrated SiC–Si Composite by Three-Dimensional Printing (3DPTM) Process
,”
Mater. Sci. Eng. A
,
298
(
1–2
), pp.
110
119
. 10.1016/S0921-5093(00)01282-X
45.
Trombetta
,
R.
,
Inzana
,
J. A.
,
Schwarz
,
E. M.
,
Kates
,
S. L.
, and
Awad
,
H. A.
,
2017
, “
3D Printing of Calcium Phosphate Ceramics for Bone Tissue Engineering and Drug Delivery
,”
Ann. Biomed. Eng.
,
45
(
1
), pp.
23
44
. 10.1007/s10439-016-1678-3
46.
Tay
,
B. Y.
,
Evans
,
J. R. G.
, and
Edirisinghe
,
M. J.
,
2003
, “
Solid Freeform Fabrication of Ceramics
,”
Int. Mater. Rev.
,
48
(
6
), pp.
341
370
. 10.1179/095066003225010263
47.
Deckers
,
J.
,
Vleugels
,
J.
, and
Kruth
,
J. P.
,
2014
, “
Additive Manufacturing of Ceramics: A Review
,”
J. Ceram. Sci. Technol.
,
5
(
4
), pp.
245
260
. 10.4416/JCST2014-00032
48.
Yang
,
L.
, and
Miyanaji
,
H.
,
2017
, “
Ceramic Additive Manufacturing: A Review of Current Status and Challenges
,”
Solid Freeform Fabrication Symposium
,
Austin, TX
,
Aug. 7–9
, pp.
652
679
.
49.
Ziaee
,
M.
, and
Crane
,
N. B.
,
2019
, “
Binder Jetting: A Review of Process, Materials, and Methods
,”
Addit. Manuf.
,
28
, pp.
781
801
. 10.1016/j.addma.2019.05.031
50.
Moritz
,
T.
, and
Maleksaeedi
,
S.
,
2018
, “Additive Manufacturing of Ceramic Components,”
Additive Manufacturing: Materials, Processes, Quantifications and Applications
,
Butterworth-Heinemann
,
Oxford
, pp.
105
161
.
51.
Desktop Metal
, “
Production | Desktop Metal
,” https://www.desktopmetal.com/products/production/, Accessed February 10, 2019.
52.
Kang
,
S.-J. L.
,
2005
,
Sintering : Densification, Grain Growth, and Microstructure
,
Elsevier Butterworth-Heinemann
,
Burlington
.
53.
Yao
,
D.
,
Gomes
,
C. M.
,
Zeng
,
Y. P.
,
Jiang
,
D.
,
Günster
,
J.
, and
Heinrich
,
J. G.
,
2015
, “
Near Zero Shrinkage Porous Al2O3 Prepared via 3D-Printing and Reaction Bonding
,”
Mater. Lett.
,
147
, pp.
116
118
. 10.1016/j.matlet.2015.02.037
54.
Solis
,
D. M.
,
Silva
,
A. V.
,
Volpato
,
N.
, and
Berti
,
L. F.
,
2019
, “
Reaction-Bonding of Aluminum Oxide Processed by Binder Jetting
,”
J. Manuf. Processes
,
41
, pp.
267
272
. 10.1016/j.jmapro.2019.04.008
55.
Díaz-Moreno
,
C. A.
,
Lin
,
Y.
,
Hurtado-Macías
,
A.
,
Espalin
,
D.
,
Terrazas
,
C. A.
,
Murr
,
L. E.
, and
Wicker
,
R. B.
,
2019
, “
Binder Jetting Additive Manufacturing of Aluminum Nitride Components
,”
Ceram. Int.
,
45
(
11
), pp.
13620
13627
. 10.1016/j.ceramint.2019.03.187
56.
Diaz-Moreno
,
C. A.
,
Rodarte
,
C.
,
Ambriz
,
S.
,
Bermudez
,
D.
,
Roberson
,
D.
,
Terrazas
,
C.
,
Espalin
,
D.
,
Ferguson
,
R.
,
Shafirovich
,
E.
,
Lin
,
Y.
, and
Wicker
,
R. B.
,
2018
, “
Binder Jetting of High Temperature and Thermally Conductive (Aluminum Nitride) Ceramic
,”
Solid Freeform Fabrication Symposium
,
Austin, TX
,
Aug. 13–15
, pp.
143
159
.
57.
Jimenez
,
E. M.
,
Ding
,
D.
,
Su
,
L.
,
Joshi
,
A. R.
,
Singh
,
A.
,
Reeja-Jayan
,
B.
, and
Beuth
,
J.
,
2019
, “
Parametric Analysis to Quantify Process Input Influence on the Printed Densities of Binder Jetted Alumina Ceramics
,”
Addit. Manuf.
,
30
, p.
100864
. 10.1016/j.addma.2019.100864
58.
Kunchala
,
P.
, and
Kappagantula
,
K.
,
2018
, “
3D Printing High Density Ceramics Using Binder Jetting With Nanoparticle Densifiers
,”
Mater. Des.
,
155
, pp.
443
450
. 10.1016/j.matdes.2018.06.009
59.
Lanzetta
,
M.
, and
Sachs
,
E.
,
2001
, “
The Line Formation With Alumina Powders in Drop on Demand Three Dimensional Printing
,”
The First International Seminar on Progress in Inovative Manufacturing Engineering
,
Sestri Levante, Italy
,
June 20–22
, pp.
197
204
.
60.
Lee
,
S. J. J.
,
Sachs
,
E.
, and
Cima
,
M.
,
1995
, “
Layer Position Accuracy in Powder-Based Rapid Prototyping
,”
Rapid Prototyp. J.
,
1
(
4
), pp.
24
37
. 10.1108/13552549510104447
61.
Sachs
,
E. M.
,
Cima
,
M. J.
,
Bredt
,
J. F.
,
Curodeau
,
A.
,
Fan
,
T.
, and
Brancazio
,
D.
,
1992
, “
CAD-Casting: The Direct Fabrication of Ceramic Shells and Cores by Three-Dimensional Printing
,”
Manuf. Rev.
,
5
(
2
), pp.
118
126
.
62.
Sachs
,
E.
,
Curodeau
,
A.
,
Gossard
,
D.
,
Jee
,
H.
,
Cima
,
M.
, and
Caldarise
,
S.
,
1994
, “
Surface Texture by 3D Printing
,”
Solid Freeform Fabrication Symposium
,
Austin, TX
,
Aug. 8–10
, pp.
56
64
.
63.
Melcher
,
R.
,
Travitzky
,
N.
,
Zollfrank
,
C.
, and
Greil
,
P.
,
2011
, “
3D Printing of Al2O3/Cu-O Interpenetrating Phase Composite
,”
J. Mater. Sci.
,
46
(
5
), pp.
1203
1210
. 10.1007/s10853-010-4896-3
64.
Yoo
,
J.
,
Cima
,
M. J.
,
Khanuja
,
S.
, and
Sachs
,
E. M.
,
1993
, “
Structural Ceramic Components by 3D Printing
,”
Solid Freeform Fabrication Symposium
,
Austin, TX
,
Aug. 9–11
, pp.
40
50
.
65.
Du
,
W.
,
Ren
,
X.
,
Chen
,
Y.
,
Ma
,
C.
,
Radovic
,
M.
, and
Pei
,
Z.
,
2018
, “
Model Guided Mixing of Ceramic Powders With Graded Particle Sizes in Binder Jetting Additive Manufacturing
,”
ASME 2018 13th International Manufacturing Science and Engineering Conference
,
College Station, TX
,
June 18–22
, pp.
1
9
.
66.
Du
,
W.
,
Ren
,
X.
,
Ma
,
C.
, and
Pei
,
Z.
,
2019
, “
Ceramic Binder Jetting Additive Manufacturing: Particle Coating for Increasing Powder Sinterability and Part Strength
,”
Mater. Lett.
,
234
, pp.
327
330
. 10.1016/j.matlet.2018.09.118
67.
Hamano
,
R.
, and
Ikoma
,
T.
,
2018
, “
Preparation of α-Alumina Powder and Binder For 3D Printer
,”
MRS Adv.
,
3
(
18
), pp.
969
975
. 10.1557/adv.2018.300
68.
Hotta
,
M.
,
Shimamura
,
A.
,
Kondo
,
N.
, and
Ohji
,
T.
,
2016
, “
Powder Layer Manufacturing of Alumina Ceramics Using Water Spray Bonding
,”
J. Ceram. Soc. Japan
,
124
(
6
), pp.
750
752
. 10.2109/jcersj2.16041
69.
Maleksaeedi
,
S.
,
Eng
,
H.
,
Wiria
,
F. E.
,
Ha
,
T. M. H.
, and
He
,
Z.
,
2014
, “
Property Enhancement of 3D-Printed Alumina Ceramics Using Vacuum Infiltration
,”
J. Mater. Process. Technol.
,
214
(
7
), pp.
1301
1306
. 10.1016/j.jmatprotec.2014.01.019
70.
Melcher
,
R.
,
Martins
,
S.
,
Travitzky
,
N.
, and
Greil
,
P.
,
2006
, “
Fabrication of Al2O3-Based Composites by Indirect 3D-Printing
,”
Mater. Lett.
,
60
(
4
), pp.
572
575
. 10.1016/j.matlet.2005.09.059
71.
Zhang
,
W.
,
Melcher
,
R.
,
Travitzky
,
N.
,
Bordia
,
R. K.
, and
Greil
,
P.
,
2009
, “
Three-Dimensional Printing of Complex-Shaped Alumina/Glass Composites
,”
Adv. Eng. Mater.
,
11
(
12
), pp.
1039
1043
. 10.1002/adem.200900213
72.
Cima
,
M. J.
,
Sachs
,
E. M.
,
Cima
,
L. G.
,
Yoo
,
J.
,
Khanuja
,
S.
,
Borland
,
S. W.
,
Wu
,
B.
, and
Giordano
,
R. A.
,
1994
, “
Computer-Derived Microstructures by 3D Printing: Bio- and Structural Materials
,”
Solid Freeform Fabrication Symposium
,
Austin, TX
,
Aug. 8–10
, pp.
181
190
.
73.
Fleisher
,
A.
,
Zolotaryov
,
D.
,
Kovalevsky
,
A.
,
Muller-Kamskii
,
G.
,
Eshed
,
E.
,
Kazakin
,
M.
, and
Popov
,
V. V.
,
2019
, “
Reaction Bonding of Silicon Carbides by Binder Jet 3D-Printing, Phenolic Resin Binder Impregnation and Capillary Liquid Silicon Infiltration
,”
Ceram. Int.
,
45
(
14
), pp.
18023
18029
.
74.
Zhao
,
H.
,
Ye
,
C.
,
Fan
,
Z.
, and
Wang
,
C.
,
2017
, “
3D Printing of CaO-Based Ceramic Core Using Nanozirconia Suspension as a Binder
,”
J. Eur. Ceram. Soc.
,
37
(
15
), pp.
5119
5125
. 10.1016/j.jeurceramsoc.2017.06.050
75.
Budding
,
A.
, and
Vaneker
,
T. H. J.
,
2013
, “
New Strategies for Powder Compaction in Powder-Based Rapid Prototyping Techniques
,”
Procedia CIRP
,
6
, pp.
527
532
. 10.1016/j.procir.2013.03.100
76.
Vaezi
,
M.
, and
Chua
,
C. K.
,
2011
, “
Effects of Layer Thickness and Binder Saturation Level Parameters on 3D Printing Process
,”
Int. J. Adv. Manuf. Technol.
,
53
(
1–4
), pp.
275
284
. 10.1007/s00170-010-2821-1
77.
Lima
,
P.
,
Zocca
,
A.
,
Acchar
,
W.
, and
Günster
,
J.
,
2018
, “
3D Printing of Porcelain by Layerwise Slurry Deposition
,”
J. Eur. Ceram. Soc.
,
38
(
9
), pp.
3395
3400
. 10.1016/j.jeurceramsoc.2018.03.014
78.
Rabinskiy
,
L. N.
,
Sitnikov
,
S. A.
,
Pogodin
,
V. A.
,
Ripetskiy
,
A. A.
, and
Solyaev
,
Y. O.
,
2017
, “
Binder Jetting of Si3N4 Ceramics With Different Porosity
,”
Solid State Phenom.
,
269
, pp.
37
50
. 10.4028/www.scientific.net/SSP.269.37
79.
Rabinskiy
,
L.
,
Ripetsky
,
A.
,
Sitnikov
,
S.
,
Solyaev
,
Y.
, and
Kahramanov
,
R.
,
2016
, “
Fabrication of Porous Silicon Nitride Ceramics Using Binder Jetting Technology
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
140
(
1
), pp.
1
6
.
80.
Fu
,
Z.
,
Schlier
,
L.
,
Travitzky
,
N.
, and
Greil
,
P.
,
2013
, “
Three-Dimensional Printing of SiSiC Lattice Truss Structures
,”
Mater. Sci. Eng. A
,
560
, pp.
851
856
. 10.1016/j.msea.2012.09.107
81.
Zocca
,
A.
,
Lima
,
P.
,
Diener
,
S.
,
Katsikis
,
N.
, and
Günster
,
J.
,
2019
, “
Additive Manufacturing of SiSiC by Layerwise Slurry Deposition and Binder Jetting (LSD-Print)
,”
J. Eur. Ceram. Soc.
,
39
(
13
), pp.
3527
3533
. 10.1016/j.jeurceramsoc.2019.05.009
82.
Travitzky
,
N.
,
Zimmermann
,
K.
,
Melcher
,
R.
, and
Greil
,
P.
,
2006
, “
From Polysaccharides to SiSiC Composites by 3d Printing
,”
Proceedings of the 107th Annual Meeting of the American Ceramic Society
,
Baltimore, MD
,
Apr. 10–13
, pp.
37
45
.
83.
Zocca
,
A.
,
Gomes
,
C. M.
,
Staude
,
A.
,
Bernardo
,
E.
,
Günster
,
J.
, and
Colombo
,
P.
,
2013
, “
SiOC Ceramics With Ordered Porosity by 3D-Printing of a Preceramic Polymer
,”
J. Mater. Res.
,
28
(
17
), pp.
2243
2252
. 10.1557/jmr.2013.129
84.
Myers
,
K.
,
Juhasz
,
M.
,
Cortes
,
P.
, and
Conner
,
B.
,
2015
, “
Mechanical Modeling Based on Numerical Homogenization of an Al2O3/Al Composite Manufactured via Binder Jet Printing
,”
Comput. Mater. Sci.
,
108
,
Part A
, pp.
128
135
. 10.1016/j.commatsci.2015.06.031
85.
Nan
,
B.
,
Yin
,
X.
,
Zhang
,
L.
, and
Cheng
,
L.
,
2011
, “
Three-Dimensional Printing of Ti3SiC2-Based Ceramics
,”
J. Am. Ceram. Soc.
,
94
(
4
), pp.
969
972
. 10.1111/j.1551-2916.2010.04257.x
86.
Yin
,
X.
,
Travitzky
,
N.
,
Melcher
,
R.
, and
Greil
,
P.
,
2006
, “
Three-Dimensional Printing of TiAl3/Al2O3 Composites
,”
Zeitschrift für Met.
,
97
(
5
), pp.
492
498
. 10.3139/146.101263
87.
Yin
,
X.
,
Travitzky
,
N.
, and
Greil
,
P.
,
2007
, “
Near-Net-Shape Fabrication of Ti3AlC2-Based Composites
,”
Int. J. Appl. Ceram. Technol.
,
4
(
2
), pp.
184
190
. 10.1111/j.1744-7402.2007.02123.x
88.
Yin
,
X.
,
Travitzky
,
N.
, and
Greil
,
P.
,
2007
, “
Three-Dimensional Printing of Nanolaminated Ti3AlC2 Toughened TiAl3-Al2O3 Composites
,”
J. Am. Ceram. Soc.
,
90
(
7
), pp.
2128
2134
. 10.1111/j.1551-2916.2007.01668.x
89.
Grant
,
L. O.
,
Alameen
,
M. B.
,
Carazzone
,
J. R.
,
Fred
,
C.
,
Iii
,
H.
, and
Cordero
,
Z. C.
,
2018
, “
Mitigating Distortion During Sintering of Binder Jet Printed Ceramics
,”
Solid Freeform Fabrication Symposium
,
Austin, TX
,
Aug. 13–15
, pp.
135
142
.
90.
Sun
,
W.
,
Dcosta
,
D. J.
,
Lin
,
F.
, and
El-Raghy
,
T.
,
2002
, “
Freeform Fabrication of Ti3SiC2 Powder-Based Structures: Part I—Integrated Fabrication Process
,”
J. Mater. Process. Technol.
,
127
(
3
), pp.
343
351
. 10.1016/S0924-0136(02)00284-4
91.
Dcosta
,
D. J.
,
Sun
,
W.
,
Lin
,
F.
, and
Ei-Raghy
,
T.
,
2002
, “
Freeform Fabrication of Ti3SiC2 Powder-Based Structures: Part II—Characterization and Microstructure Evaluation
,”
J. Mater. Process. Technol.
,
127
(
3
), pp.
352
360
. 10.1016/S0924-0136(02)00320-5
92.
Enneti
,
R. K.
,
Prough
,
K. C.
,
Wolfe
,
T. A.
,
Klein
,
A.
,
Studley
,
N.
, and
Trasorras
,
J. L.
,
2018
, “
Sintering of WC-12%Co Processed by Binder Jet 3D Printing (BJ3DP) Technology
,”
Int. J. Refract. Met. Hard Mater.
,
71
, pp.
28
35
. 10.1016/j.ijrmhm.2017.10.023
93.
Enneti
,
R. K.
, and
Prough
,
K. C.
,
2019
, “
Wear Properties of Sintered WC-12%Co Processed via Binder Jet 3D Printing (BJ3DP)
,”
Int. J. Refract. Met. Hard Mater.
,
78
, pp.
228
232
. 10.1016/j.ijrmhm.2018.10.003
94.
Kernan
,
B. D.
,
Sachs
,
E. M.
,
Oliveira
,
M. A.
, and
Cima
,
M. J.
,
2007
, “
Three-Dimensional Printing of Tungsten Carbide–10 Wt% Cobalt Using a Cobalt Oxide Precursor
,”
Int. J. Refract. Met. Hard Mater.
,
25
(
1
), pp.
82
94
. 10.1016/j.ijrmhm.2006.02.002
95.
Zhao
,
H.
,
Ye
,
C.
,
Fan
,
Z.
, and
Shi
,
Y.
,
2015
, “
3D Printing of ZrO2 Ceramic Using Nano-Zirconia Suspension as a Binder
,”
4th International Conference on Sensors, Measurement and Intelligent Materials
,
Shenzhen, China
,
Dec. 27–28
, pp.
654
657
.
96.
Mancuso
,
E.
,
Alharbi
,
N.
,
Bretcanu
,
O. A.
,
Marshall
,
M.
,
Birch
,
M. A.
,
McCaskie
,
A. W.
, and
Dalgarno
,
K. W.
,
2017
, “
Three-Dimensional Printing of Porous Load-Bearing Bioceramic Scaffolds
,”
Proc. Inst. Mech. Eng. Part H J. Eng. Med.
,
231
(
6
), pp.
575
585
. 10.1177/0954411916682984
97.
Zocca
,
A.
,
Gomes
,
C. M.
,
Bernardo
,
E.
,
Müller
,
R.
,
Günster
,
J.
, and
Colombo
,
P.
,
2013
, “
LAS Glass-Ceramic Scaffolds by Three-Dimensional Printing
,”
J. Eur. Ceram. Soc.
,
33
(
9
), pp.
1525
1533
. 10.1016/j.jeurceramsoc.2012.12.012
98.
Sun
,
C.
,
Tian
,
X.
,
Wang
,
L.
,
Liu
,
Y.
,
Wirth
,
C. M.
,
Günster
,
J.
,
Li
,
D.
, and
Jin
,
Z.
,
2017
, “
Effect of Particle Size Gradation on the Performance of Glass-Ceramic 3D Printing Process
,”
Ceram. Int.
,
43
(
1
), pp.
578
584
. 10.1016/j.ceramint.2016.09.197
99.
Winkel
,
A.
,
Meszaros
,
R.
,
Reinsch
,
S.
,
Müller
,
R.
,
Travitzky
,
N.
,
Fey
,
T.
,
Greil
,
P.
, and
Wondraczek
,
L.
,
2012
, “
Sintering of 3D-Printed Glass/HAp Composites
,”
J. Am. Ceram. Soc.
,
95
(
11
), pp.
3387
3393
. 10.1111/j.1551-2916.2012.05368.x
100.
Seidenstuecker
,
M.
,
Kerr
,
L.
,
Bernstein
,
A.
,
Mayr
,
H.
,
Suedkamp
,
N.
,
Gadow
,
R.
,
Krieg
,
P.
,
Hernandez Latorre
,
S.
,
Thomann
,
R.
,
Syrowatka
,
F.
, and
Esslinger
,
S.
,
2017
, “
3D Powder Printed Bioglass and β-Tricalcium Phosphate Bone Scaffolds
,”
Materials (Basel)
,
11
(
13
), pp.
1
21
. 10.3390/ma11010013
101.
Bergmann
,
C.
,
Lindner
,
M.
,
Zhang
,
W.
,
Koczur
,
K.
,
Kirsten
,
A.
,
Telle
,
R.
, and
Fischer
,
H.
,
2010
, “
3D Printing of Bone Substitute Implants Using Calcium Phosphate and Bioactive Glasses
,”
J. Eur. Ceram. Soc.
,
30
(
12
), pp.
2563
2567
. 10.1016/j.jeurceramsoc.2010.04.037
102.
Suwanprateeb
,
J.
,
Sanngam
,
R.
,
Suvannapruk
,
W.
, and
Panyathanmaporn
,
T.
,
2009
, “
Mechanical and In Vitro Performance of Apatite-Wollastonite Glass Ceramic Reinforced Hydroxyapatite Composite Fabricated by 3D-Printing
,”
J. Mater. Sci. Mater. Med.
,
20
(
6
), pp.
1281
1289
. 10.1007/s10856-009-3697-1
103.
Zocca
,
A.
,
Elsayed
,
H.
,
Bernardo
,
E.
,
Gomes
,
C. M.
,
Lopez-Heredia
,
M. A.
,
Knabe
,
C.
,
Colombo
,
P.
, and
Günster
,
J.
,
2015
, “
3D-Printed Silicate Porous Bioceramics Using a Non-Sacrificial Preceramic Polymer Binder
,”
Biofabrication
,
7
(
2
), pp.
1
12
. 10.1088/1758-5090/7/2/025008
104.
Komlev
,
V. S.
,
Popov
,
V. K.
,
Mironov
,
A. V.
,
Fedotov
,
A. Y.
,
Teterina
,
A. Y.
,
Smirnov
,
I. V.
,
Bozo
,
I. Y.
,
Rybko
,
V. A.
, and
Deev
,
R. V.
,
2015
, “
3D Printing of Octacalcium Phosphate Bone Substitutes
,”
Front. Bioeng. Biotechnol.
,
3
, pp.
1
7
. 10.3389/fbioe.2015.00081
105.
Szucs
,
T. D.
, and
Brabazon
,
D.
,
2009
, “
Effect of Saturation and Post Processing on 3D Printed Calcium Phosphate Scaffolds
,”
Bioceram. 21
,
396–398
, pp.
663
666
. 10.4028/0-87849-353-0.663
106.
Gildenhaar
,
R.
,
Knabe
,
C.
,
Gomes
,
C.
,
Linow
,
U.
,
Houshmand
,
A.
, and
Berger
,
G.
,
2011
, “
Calcium Alkaline Phosphate Scaffolds for Bone Regeneration 3D-Fabricated by Additive Manufacturing
,”
Key Eng. Mater.
,
493
, pp.
849
854
. 10.4028/www.scientific.net/KEM.493-494.849
107.
El-Ghannam
,
A.
,
Cunningham
,
L.
,
Pienkowski
,
D.
, and
Hart
,
A.
,
2007
, “
Bone Engineering of the Rabbit Ulna
,”
J. Oral Maxillofac. Surg.
,
65
(
8
), pp.
1495
1502
. 10.1016/j.joms.2006.10.031
108.
El-Ghannam
,
A.
,
Hart
,
A.
,
White
,
D.
, and
Cunningham
,
L.
,
2013
, “
Mechanical Properties and Cytotoxicity of a Resorbable Bioactive Implant Prepared by Rapid Prototyping Technique
,”
J. Biomed. Mater. Res. Part A
,
101
(
10
), pp.
2851
2861
. 10.1002/jbm.a.34585
109.
Shanjani
,
Y.
,
Amritha De Croos
,
J. N.
,
Pilliar
,
R. M.
,
Kandel
,
R. A.
, and
Toyserkani
,
E.
,
2010
, “
Solid Freeform Fabrication and Characterization of Porous Calcium Polyphosphate Structures for Tissue Engineering Purposes
,”
J. Biomed. Mater. Res., Part B
,
93
(
2
), pp.
510
519
. 10.1002/jbm.b.31610
110.
Sheydaeian
,
E.
,
Vlasea
,
M.
,
Woo
,
A.
,
Pilliar
,
R.
,
Hu
,
E.
, and
Toyserkani
,
E.
,
2017
, “
Effect of Glycerol Concentrations on the Mechanical Properties of Additive Manufactured Porous Calcium Polyphosphate Structures for Bone Substitute Applications
,”
J. Biomed. Mater. Res., Part B
,
105
(
4
), pp.
828
835
. 10.1002/jbm.b.33616
111.
Butscher
,
A.
,
Bohner
,
M.
,
Roth
,
C.
,
Ernstberger
,
A.
,
Heuberger
,
R.
,
Doebelin
,
N.
,
Rudolf Von Rohr
,
P.
, and
Müller
,
R.
,
2012
, “
Printability of Calcium Phosphate Powders for Three-Dimensional Printing of Tissue Engineering Scaffolds
,”
Acta Biomater.
,
8
(
1
), pp.
373
385
. 10.1016/j.actbio.2011.08.027
112.
Butscher
,
A.
,
Bohner
,
M.
,
Doebelin
,
N.
,
Galea
,
L.
,
Loeffel
,
O.
, and
Müller
,
R.
,
2013
, “
Moisture Based Three-Dimensional Printing of Calcium Phosphate Structures for Scaffold Engineering
,”
Acta Biomater.
,
9
(
2
), pp.
5369
5378
. 10.1016/j.actbio.2012.10.009
113.
Mehrban
,
N.
,
Bowen
,
J.
,
Vorndran
,
E.
,
Gbureck
,
U.
, and
Grover
,
L. M.
,
2013
, “
Structural Changes to Resorbable Calcium Phosphate Bioceramic Aged In Vitro
,”
Colloids Surf. B Biointerfaces
,
111
, pp.
469
478
. 10.1016/j.colsurfb.2013.06.020
114.
Peters
,
F.
,
Groisman
,
D.
,
Davids
,
R.
,
Hänel
,
T.
,
Dürr
,
H.
, and
Klein
,
M.
,
2006
, “
Comparative Study of Patient Individual Implants From β-Tricalcium Phosphate Made by Different Techniques Based on CT Data
,”
Materwiss. Werksttech.
,
37
(
6
), pp.
457
461
. 10.1002/mawe.200600019
115.
Becker
,
S. T.
,
Bolte
,
H.
,
Krapf
,
O.
,
Seitz
,
H.
,
Douglas
,
T.
,
Sivananthan
,
S.
,
Wiltfang
,
J.
,
Sherry
,
E.
, and
Warnke
,
P. H.
,
2009
, “
Endocultivation: 3D Printed Customized Porous Scaffolds for Heterotopic Bone Induction
,”
Oral Oncol.
,
45
(
11
), pp.
e181
e188
. 10.1016/j.oraloncology.2009.07.004
116.
Klammert
,
U.
,
Gbureck
,
U.
,
Vorndran
,
E.
,
Rödiger
,
J.
,
Meyer-Marcotty
,
P.
, and
Kübler
,
A. C.
,
2010
, “
3D Powder Printed Calcium Phosphate Implants for Reconstruction of Cranial and Maxillofacial Defects
,”
J. Craniomaxillofac. Surg.
,
38
(
8
), pp.
565
570
. 10.1016/j.jcms.2010.01.009
117.
Tamimi
,
F.
,
Torres
,
J.
,
Gbureck
,
U.
,
Lopez-Cabarcos
,
E.
,
Bassett
,
D. C.
,
Alkhraisat
,
M. H.
, and
Barralet
,
J. E.
,
2009
, “
Craniofacial Vertical Bone Augmentation: A Comparison Between 3D Printed Monolithic Monetite Blocks and Autologous Onlay Grafts in the Rabbit
,”
Biomaterials
,
30
(
31
), pp.
6318
6326
. 10.1016/j.biomaterials.2009.07.049
118.
Tamimi
,
F.
,
Torres
,
J.
,
Al-Abedalla
,
K.
,
Lopez-Cabarcos
,
E.
,
Alkhraisat
,
M. H.
,
Bassett
,
D. C.
,
Gbureck
,
U.
, and
Barralet
,
J. E.
,
2014
, “
Osseointegration of Dental Implants in 3D-Printed Synthetic Onlay Grafts Customized According to Bone Metabolic Activity in Recipient Site
,”
Biomaterials
,
35
(
21
), pp.
5436
5445
. 10.1016/j.biomaterials.2014.03.050
119.
Torres
,
J.
,
Tamimi
,
F.
,
Alkhraisat
,
M. H.
,
Prados-Frutos
,
J. C.
,
Rastikerdar
,
E.
,
Gbureck
,
U.
,
Barralet
,
J. E.
, and
López-Cabarcos
,
E.
,
2011
, “
Vertical Bone Augmentation With 3D-Synthetic Monetite Blocks in the Rabbit Calvaria
,”
J. Clin. Periodontol.
,
38
(
12
), pp.
1147
1153
. 10.1111/j.1600-051X.2011.01787.x
120.
Gbureck
,
U.
,
Hölzel
,
T.
,
Klammert
,
U.
,
Würzler
,
K.
,
Müller
,
F. A.
, and
Barralet
,
J. E.
,
2007
, “
Resorbable Dicalcium Phosphate Bone Substitutes Prepared by 3D Powder Printing
,”
Adv. Funct. Mater.
,
17
(
18
), pp.
3940
3945
. 10.1002/adfm.200700019
121.
Castilho
,
M.
,
Dias
,
M.
,
Vorndran
,
E.
,
Gbureck
,
U.
,
Fernandes
,
P.
,
Pires
,
I.
,
Gouveia
,
B.
,
Armés
,
H.
,
Pires
,
E.
, and
Rodrigues
,
J.
,
2014
, “
Application of a 3D Printed Customized Implant for Canine Cruciate Ligament Treatment by Tibial Tuberosity Advancement
,”
Biofabrication
,
6
(
2
), pp.
1
13
. 10.1088/1758-5082/6/2/025005
122.
Habibovic
,
P.
,
Gbureck
,
U.
,
Doillon
,
C. J.
,
Bassett
,
D. C.
,
van Blitterswijk
,
C. A.
, and
Barralet
,
J. E.
,
2008
, “
Osteoconduction and Osteoinduction of Low-Temperature 3D Printed Bioceramic Implants
,”
Biomaterials
,
29
(
7
), pp.
944
953
. 10.1016/j.biomaterials.2007.10.023
123.
Gbureck
,
U.
,
Hölzel
,
T.
,
Doillon
,
C. J.
,
Müller
,
F. A.
, and
Barralet
,
J. E.
,
2007
, “
Direct Printing of Bioceramic Implants With Spatially Localized Angiogenic Factors
,”
Adv. Mater.
,
19
(
6
), pp.
795
800
. 10.1002/adma.200601370
124.
Vorndran
,
E.
,
Klarner
,
M.
,
Klammert
,
U.
,
Grover
,
L. M.
,
Patel
,
S.
,
Barralet
,
J. E.
, and
Gbureck
,
U.
,
2008
, “
3D Powder Printing of β-Tricalcium Phosphate Ceramics Using Different Strategies
,”
Adv. Eng. Mater.
,
10
(
12
), pp.
B67
B71
. 10.1002/adem.200800179
125.
Klammert
,
U.
,
Reuther
,
T.
,
Jahn
,
C.
,
Kraski
,
B.
,
Kübler
,
A. C.
, and
Gbureck
,
U.
,
2009
, “
Cytocompatibility of Brushite and Monetite Cell Culture Scaffolds Made by Three-Dimensional Powder Printing
,”
Acta Biomater.
,
5
(
2
), pp.
727
734
. 10.1016/j.actbio.2008.08.019
126.
Gbureck
,
U.
,
Hölzel
,
T.
,
Biermann
,
I.
,
Barralet
,
J. E.
, and
Grover
,
L. M.
,
2008
, “
Preparation of Tricalcium Phosphate/Calcium Pyrophosphate Structures via Rapid Prototyping
,”
J. Mater. Sci. Mater. Med.
,
19
(
4
), pp.
1559
1563
. 10.1007/s10856-008-3373-x
127.
Birkholz
,
M. N.
,
Agrawal
,
G.
,
Bergmann
,
C.
,
Schröder
,
R.
,
Lechner
,
S. J.
,
Pich
,
A.
, and
Fischer
,
H.
,
2015
, “
Calcium Phosphate/Microgel Composites for 3D Powderbed Printing of Ceramic Materials
,”
Biomed. Tech.
,
61
(
3
), pp.
267
279
. 10.1515/bmt-2014-0141
128.
Fielding
,
G. A.
,
Bandyopadhyay
,
A.
, and
Bose
,
S.
,
2012
, “
Effects of Silica and Zinc Oxide Doping on Mechanical and Biological Properties of 3D Printed Tricalcium Phosphate Tissue Engineering Scaffolds
,”
Dent. Mater.
,
28
(
2
), pp.
113
122
. 10.1016/j.dental.2011.09.010
129.
Warnke
,
P. H.
,
Seitz
,
H.
,
Warnke
,
F.
,
Becker
,
S. T.
,
Sivananthan
,
S.
,
Sherry
,
E.
,
Liu
,
Q.
,
Wiltfang
,
J.
, and
Douglas
,
T.
,
2010
, “
Ceramic Scaffolds Produced by Computer-Assisted 3D Printing and Sintering: Characterization and Biocompatibility Investigations
,”
J. Biomed. Mater. Res., Part B
,
93
(
1
), pp.
212
217
. 10.1002/jbm.b.31577
130.
Tarafder
,
S.
,
Balla
,
V. K.
,
Davies
,
N. M.
,
Bandyopadhyay
,
A.
, and
Bose
,
S.
,
2013
, “
Microwave-Sintered 3D Printed Tricalcium Phosphate Scaffolds for Bone Tissue Engineering
,”
J. Tissue Eng. Regen. Med.
,
7
(
8
), pp.
631
641
. 10.1002/term.555
131.
Igawa
,
K.
,
Mochizuki
,
M.
,
Sugimori
,
O.
,
Shimizu
,
K.
,
Yamazawa
,
K.
,
Kawaguchi
,
H.
,
Nakamura
,
K.
,
Takato
,
T.
,
Nishimura
,
R.
,
Suzuki
,
S.
,
Anzai
,
M.
,
Chung
,
U.-I.
, and
Sasaki
,
N.
,
2006
, “
Tailor-Made Tricalcium Phosphate Bone Implant Directly Fabricated by a Three-Dimensional Ink-Jet Printer
,”
J. Artif. Organs
,
9
(
4
), pp.
234
240
. 10.1007/s10047-006-0347-y
132.
Santos
,
C. F. L.
,
Silva
,
A. P.
,
Lopes
,
L.
,
Pires
,
I.
, and
Correia
,
I. J.
,
2012
, “
Design and Production of Sintered β-Tricalcium Phosphate 3D Scaffolds for Bone Tissue Regeneration
,”
Mater. Sci. Eng. C
,
32
(
5
), pp.
1293
1298
. 10.1016/j.msec.2012.04.010
133.
Barralet
,
J.
,
Gbureck
,
U.
,
Habibovic
,
P.
,
Vorndran
,
E.
,
Gerard
,
C.
, and
Doillon
,
C. J.
,
2009
, “
Angiogenesis in Calcium Phosphate Scaffolds by Inorganic Copper Ion Release
,”
Tissue Eng. Part A
,
15
(
7
), pp.
1601
1609
. 10.1089/ten.tea.2007.0370
134.
Roy
,
T. D.
,
Simon
,
J. L.
,
Ricci
,
J. L.
,
Rekow
,
E. D.
,
Thompson
,
V. P.
, and
Parsons
,
J. R.
,
2003
, “
Performance of Degradable Composite Bone Repair Products Made via Three-Dimensional Fabrication Techniques
,”
J. Biomed. Mater. Res.
,
66A
(
2
), pp.
283
291
. 10.1002/jbm.a.10582
135.
Tarafder
,
S.
,
Davies
,
N. M.
,
Bandyopadhyay
,
A.
, and
Bose
,
S.
,
2013
, “
3D Printed Tricalcium Phosphate Bone Tissue Engineering Scaffolds: Effect of SrO and MgO Doping on In Vivo Osteogenesis in a Rat Distal Femoral Defect Model
,”
Biomater. Sci.
,
1
(
12
), pp.
1250
1259
. 10.1039/c3bm60132c
136.
Tarafder
,
S.
,
Dernell
,
W. S.
,
Bandyopadhyay
,
A.
, and
Bose
,
S.
,
2015
, “
SrO- and MgO-Doped Microwave Sintered 3D Printed Tricalcium Phosphate Scaffolds: Mechanical Properties and In Vivo Osteogenesis in a Rabbit Model
,”
J. Biomed. Mater. Res., Part B
,
103
(
3
), pp.
679
690
. 10.1002/jbm.b.33239
137.
Bose
,
S.
,
Tarafder
,
S.
, and
Bandyopadhyay
,
A.
,
2017
, “
Effect of Chemistry on Osteogenesis and Angiogenesis Towards Bone Tissue Engineering Using 3D Printed Scaffolds
,”
Ann. Biomed. Eng.
,
45
(
1
), pp.
261
272
. 10.1007/s10439-016-1646-y
138.
Castilho
,
M.
,
Moseke
,
C.
,
Ewald
,
A.
,
Gbureck
,
U.
,
Groll
,
J.
,
Pires
,
I.
,
Teßmar
,
J.
, and
Vorndran
,
E.
,
2014
, “
Direct 3D Powder Printing of Biphasic Calcium Phosphate Scaffolds for Substitution of Complex Bone Defects
,”
Biofabrication
,
6
(
1
), pp.
1
12
. 10.1088/1758-5082/6/1/015006
139.
Khalyfa
,
A.
,
Vogt
,
S.
,
Weisser
,
J.
,
Grimm
,
G.
,
Rechtenbach
,
A.
,
Meyer
,
W.
, and
Schnabelrauch
,
M.
,
2007
, “
Development of a New Calcium Phosphate Powder-Binder System for the 3D Printing of Patient Specific Implants
,”
J. Mater. Sci. Mater. Med.
,
18
(
5
), pp.
909
916
. 10.1007/s10856-006-0073-2
140.
Vella
,
J. B.
,
Trombetta
,
R. P.
,
Hoffman
,
M. D.
,
Inzana
,
J.
,
Awad
,
H.
, and
Benoit
,
D. S. W.
,
2017
, “
Three Dimensional Printed Calcium Phosphate and Poly(Caprolactone) Composites With Improved Mechanical Properties and Preserved Microstructure
,”
J. Biomed. Mater. Res. Part A
,
106
(
3
), pp.
663
672
. 10.1002/jbm.a.36270
141.
Inzana
,
J. A.
,
Olvera
,
D.
,
Fuller
,
S. M.
,
Kelly
,
J. P.
,
Graeve
,
O. A.
,
Schwarz
,
E. M.
,
Kates
,
S. L.
, and
Awad
,
H. A.
,
2014
, “
3D Printing of Composite Calcium Phosphate and Collagen Scaffolds for Bone Regeneration
,”
Biomaterials
,
35
(
13
), pp.
4026
4034
. 10.1016/j.biomaterials.2014.01.064
142.
Seitz
,
H.
,
Deisinger
,
U.
,
Leukers
,
B.
,
Detsch
,
R.
, and
Ziegler
,
G.
,
2009
, “
Different Calcium Phosphate Granules for 3-D Printing of Bone Tissue Engineering Scaffolds
,”
Adv. Eng. Mater.
,
11
(
5
), pp.
41
46
. 10.1002/adem.200800334
143.
Wang
,
Y.
,
Wang
,
K.
,
Li
,
X.
,
Wei
,
Q.
,
Chai
,
W.
,
Wang
,
S.
,
Che
,
Y.
,
Lu
,
T.
, and
Zhang
,
B.
,
2017
, “
3D Fabrication and Characterization of Phosphoric Acid Scaffold With a HA / β -TCP Weight Ratio of 60 : 40 for Bone Tissue Engineering Applications
,”
PLoS One
,
12
(
4
), pp.
1
17
.
144.
Strobel
,
L.
,
Rath
,
S.
,
Maier
,
A.
,
Beier
,
J.
,
Arkudas
,
A.
,
Greil
,
P.
,
Horch
,
R.
, and
Kneser
,
U.
,
2014
, “
Induction of Bone Formation in Biphasic Calcium Phosphate Scaffolds by Bone Morphogenetic Protein-2 and Primary Osteoblasts
,”
J. Tissue Eng. Regen. Med.
,
8
(
3
), pp.
176
185
. 10.1002/term.1511
145.
Rath
,
S. N.
,
Strobel
,
L. A.
,
Arkudas
,
A.
,
Beier
,
J. P.
,
Maier
,
A. K.
,
Greil
,
P.
,
Horch
,
R. E.
, and
Kneser
,
U.
,
2012
, “
Osteoinduction and Survival of Osteoblasts and Bone-Marrow Stromal Cells in 3D Biphasic Calcium Phosphate Scaffolds Under Static and Dynamic Culture Conditions
,”
J. Cell. Mol. Med.
,
16
(
10
), pp.
2350
2361
. 10.1111/j.1582-4934.2012.01545.x
146.
Detsch
,
R.
,
Schaefer
,
S.
,
Deisinger
,
U.
,
Ziegler
,
G.
,
Seitz
,
H.
, and
Leukers
,
B.
,
2011
, “
In Vitro: Osteoclastic Activity Studies on Surfaces of 3D Printed Calcium Phosphate Scaffolds
,”
J. Biomater. Appl.
,
26
(
3
), pp.
359
380
. 10.1177/0885328210373285
147.
Zhou
,
Z.
,
Buchanan
,
F.
,
Mitchell
,
C.
, and
Dunne
,
N.
,
2014
, “
Printability of Calcium Phosphate: Calcium Sulfate Powders for the Application of Tissue Engineered Bone Scaffolds Using the 3D Printing Technique
,”
Mater. Sci. Eng. C
,
38
(
1
), pp.
1
10
. 10.1016/j.msec.2014.01.027
148.
Spath
,
S.
,
Drescher
,
P.
, and
Seitz
,
H.
,
2015
, “
Impact of Particle Size of Ceramic Granule Blends on Mechanical Strength and Porosity of 3D Printed Scaffolds
,”
Materials (Basel)
,
8
(
8
), pp.
4720
4732
. 10.3390/ma8084720
149.
Chumnanklang
,
R.
,
Panyathanmaporn
,
T.
,
Sitthiseripratip
,
K.
, and
Suwanprateeb
,
J.
,
2007
, “
3D Printing of Hydroxyapatite: Effect of Binder Concentration in Pre-Coated Particle on Part Strength
,”
Mater. Sci. Eng. C
,
27
(
4
), pp.
914
921
. 10.1016/j.msec.2006.11.004
150.
Wang
,
Y.
,
Li
,
X.
,
Li
,
C.
,
Yang
,
M.
, and
Wei
,
Q.
,
2015
, “
Binder Droplet Impact Mechanism on a Hydroxyapatite Microsphere Surface in 3D Printing of Bone Scaffolds
,”
J. Mater. Sci.
,
50
(
14
), pp.
5014
5023
. 10.1007/s10853-015-9050-9
151.
Spath
,
S.
, and
Seitz
,
H.
,
2014
, “
Influence of Grain Size and Grain-Size Distribution on Workability of Granules With 3D Printing
,”
Int. J. Adv. Manuf. Technol.
,
70
(
1–4
), pp.
135
144
. 10.1007/s00170-013-5210-8
152.
Fierz
,
F. C.
,
Beckmann
,
F.
,
Huser
,
M.
,
Irsen
,
S. H.
,
Leukers
,
B.
,
Witte
,
F.
,
Degistirici
,
Ö
,
Andronache
,
A.
,
Thie
,
M.
, and
Müller
,
B.
,
2008
, “
The Morphology of Anisotropic 3D-Printed Hydroxyapatite Scaffolds
,”
Biomaterials
,
29
(
28
), pp.
3799
3806
. 10.1016/j.biomaterials.2008.06.012
153.
Irsen
,
S. H.
,
Leukers
,
B.
,
Höckling
,
C.
,
Tille
,
C.
, and
Seitz
,
H.
,
2006
, “
Bioceramic Granulates for Use in 3D Printing: Process Engineering Aspects
,”
Materwiss. Werksttech.
,
37
(
6
), pp.
533
537
. 10.1002/mawe.200600033
154.
Leukers
,
B.
,
Gülkan
,
H.
,
Irsen
,
S.
,
Milz
,
S.
,
Tille
,
C.
,
Schieker
,
M.
, and
Seitz
,
H.
,
2005
, “
Hydroxyapatite Scaffolds for Bone Tissue Engineering Made by 3D Printing
,”
J. Mater. Sci. Mater. Med.
,
6
(
12
), pp.
1121
1124
. 10.1007/s10856-005-4716-5
155.
Suwanprateeb
,
J.
,
Sanngam
,
R.
, and
Panyathanmaporn
,
T.
,
2010
, “
Influence of Raw Powder Preparation Routes on Properties of Hydroxyapatite Fabricated by 3D Printing Technique
,”
Mater. Sci. Eng. C
,
30
(
4
), pp.
610
617
. 10.1016/j.msec.2010.02.014
156.
Will
,
J.
,
Melcher
,
R.
,
Treul
,
C.
,
Travitzky
,
N.
,
Kneser
,
U.
,
Polykandriotis
,
E.
,
Horch
,
R.
, and
Greil
,
P.
,
2008
, “
Porous Ceramic Bone Scaffolds for Vascularized Bone Tissue Regeneration
,”
J. Mater. Sci. Mater. Med.
,
19
(
8
), pp.
2781
2790
. 10.1007/s10856-007-3346-5
157.
Qian
,
C.
, and
Sun
,
J.
,
2013
, “
Fabrication of the Porous Hydroxyapatite Implant by 3D Printing
,”
J. Ceram. Process. Res.
,
14
(
4
), pp.
513
516
.
158.
Suwanprateeb
,
J.
,
Sanngam
,
R.
, and
Suwanpreuk
,
W.
,
2008
, “
Fabrication of Bioactive Hydroxyapatite/Bis-GMA Based Composite via Three Dimensional Printing
,”
J. Mater. Sci. Mater. Med.
,
19
(
7
), pp.
2637
2645
. 10.1007/s10856-007-3362-5
159.
Farzadi
,
A.
,
Solati-Hashjin
,
M.
,
Asadi-Eydivand
,
M.
, and
Osman
,
N. A. A.
,
2014
, “
Effect of Layer Thickness and Printing Orientation on Mechanical Properties and Dimensional Accuracy of 3D Printed Porous Samples for Bone Tissue Engineering
,”
PLoS One
,
9
(
9
), pp.
1
14
. 10.1371/journal.pone.0108252
160.
Farzadi
,
A.
,
Waran
,
V.
,
Solati-Hashjin
,
M.
,
Rahman
,
Z. A. A.
,
Asadi
,
M.
, and
Osman
,
N. A. A.
,
2015
, “
Effect of Layer Printing Delay on Mechanical Properties and Dimensional Accuracy of 3D Printed Porous Prototypes in Bone Tissue Engineering
,”
Ceram. Int.
,
41
(
7
), pp.
8320
8330
. 10.1016/j.ceramint.2015.03.004
161.
Asadi-Eydivand
,
M.
,
Solati-Hashjin
,
M.
,
Fathi
,
A.
,
Padashi
,
M.
, and
Abu Osman
,
N. A.
,
2016
, “
Optimal Design of a 3D-Printed Scaffold Using Intelligent Evolutionary Algorithms
,”
Appl. Soft Comput. J.
,
39
, pp.
36
47
. 10.1016/j.asoc.2015.11.011
162.
Suwanprateeb
,
J.
,
Thammarakcharoen
,
F.
, and
Hobang
,
N.
,
2016
, “
Enhancement of Mechanical Properties of 3D Printed Hydroxyapatite by Combined Low and High Molecular Weight Polycaprolactone Sequential Infiltration
,”
J. Mater. Sci. Mater. Med.
,
27
(
11
), pp.
1
12
. 10.1007/s10856-016-5784-4
163.
Suwanprateeb
,
J.
,
Thammarakcharoen
,
F.
,
Wasoontararat
,
K.
, and
Suvannapruk
,
W.
,
2012
, “
Influence of Printing Parameters on the Transformation Efficiency of 3D-Printed Plaster of Paris to Hydroxyapatite and Its Properties
,”
Rapid Prototyp. J.
,
18
(
6
), pp.
490
499
. 10.1108/13552541211272036
164.
Lowmunkong
,
R.
,
Sohmura
,
T.
,
Suzuki
,
Y.
,
Matsuya
,
S.
, and
Ishikawa
,
K.
,
2009
, “
Fabrication of Freeform Bone-Filling Calcium Phosphate Ceramics by Gypsum 3D Printing Method
,”
J. Biomed. Mater. Res., Part B
,
90 B
(
2
), pp.
531
539
. 10.1002/jbm.b.31314
165.
Zhou
,
Z.
,
Mitchell
,
C. A.
,
Buchanan
,
F. J.
, and
Dunne
,
N. J.
,
2013
, “
Effects of Heat Treatment on the Mechanical and Degradation Properties of 3D-Printed Calcium-Sulphate-Based Scaffolds
,”
ISRN Biomater.
,
2013
, pp.
1
10
. 10.5402/2013/750720
166.
Suvannapruk
,
W.
,
Thammarakcharoen
,
F.
,
Phanpiriya
,
P.
, and
Suwanprateeb
,
J.
,
2013
, “
Development of Antibiotics Impregnated Nanosized Silver Phosphate-Doped Hydroxyapatite Bone Graft
,”
J. Nanomater.
,
2013
, pp.
1
9
. 10.1155/2013/542584
167.
Meininger
,
S.
,
Mandal
,
S.
,
Kumar
,
A.
,
Groll
,
J.
,
Basu
,
B.
, and
Gbureck
,
U.
,
2016
, “
Strength Reliability and In Vitro Degradation of Three-Dimensional Powder Printed Strontium-Substituted Magnesium Phosphate Scaffolds
,”
Acta Biomater.
,
31
, pp.
401
411
. 10.1016/j.actbio.2015.11.050
168.
Klammert
,
U.
,
Vorndran
,
E.
,
Reuther
,
T.
,
Müller
,
F. A.
,
Zorn
,
K.
, and
Gbureck
,
U.
,
2010
, “
Low Temperature Fabrication of Magnesium Phosphate Cement Scaffolds by 3D Powder Printing
,”
J. Mater. Sci. Mater. Med.
,
21
(
11
), pp.
2947
2953
. 10.1007/s10856-010-4148-8
169.
Gonzalez
,
J. A.
,
Mireles
,
J.
,
Lin
,
Y.
, and
Wicker
,
R. B.
,
2016
, “
Characterization of Ceramic Components Fabricated Using Binder Jetting Additive Manufacturing Technology
,”
Ceram. Int.
,
42
(
9
), pp.
10559
10564
. 10.1016/j.ceramint.2016.03.079
170.
Gaytan
,
S. M.
,
Cadena
,
M. A.
,
Karim
,
H.
,
Delfin
,
D.
,
Lin
,
Y.
,
Espalin
,
D.
,
MacDonald
,
E.
, and
Wicker
,
R. B.
,
2015
, “
Fabrication of Barium Titanate by Binder Jetting Additive Manufacturing Technology
,”
Ceram. Int.
,
41
(
5
), pp.
6610
6619
. 10.1016/j.ceramint.2015.01.108
171.
Gaytan
,
S. M.
,
Cadena
,
M.
,
Aldaz
,
M.
,
Herderick
,
E.
,
Medina
,
F.
,
Wicker
,
R.
, and
Keck
,
W. M.
,
2013
, “
Analysis of Ferroelectric Ceramic Fabricated by Binder Jetting Technology
,”
Solid Freeform Fabrication Symposium
,
Austin
,
Aug. 12–14
, pp.
859
868
.
172.
Utela
,
B.
,
Anderson
,
R. L.
, and
Kuhn
,
H.
,
2006
, “
Advanced Ceramic Materials and Processes for Three-Dimensional Printing (3DP)
,”
Solid Freeform Fabrication Symposium
,
Austin, TX
,
Aug. 14–16
, pp.
290
303
.
173.
Miyanaji
,
H.
,
Zhang
,
S.
,
Lassell
,
A.
,
Zandinejad
,
A. A.
, and
Yang
,
L.
,
2016
, “
Optimal Process Parameters for 3D Printing of Porcelain Structures
,”
Procedia Manuf.
,
5
, pp.
870
887
. 10.1016/j.promfg.2016.08.074
174.
Miyanaji
,
H.
,
Zhang
,
S.
,
Lassell
,
A.
,
Zandinejad
,
A.
, and
Yang
,
L.
,
2016
, “
Process Development of Porcelain Ceramic Material With Binder Jetting Process for Dental Applications
,”
JOM
,
68
(
3
), pp.
831
841
. 10.1007/s11837-015-1771-3
175.
Miyanaji
,
H.
,
Yang
,
L.
,
Zhang
,
S.
, and
Zandinejad
,
A.
,
2014
, “
A Preliminary Study of the Graded Dental Porcelain Ceramic Structures Fabricated via Binder Jetting 3D Printing
,”
Solid Freeform Fabrication Symposium
,
Austin, TX
,
Aug. 4–6
, pp.
578
589
.
176.
Wang
,
H.-R.
,
Cima
,
M. J.
, and
Sachs
,
E. M.
,
2002
, “
Three-Dimensional Printing (3DPTM) of Gradient-Index (GRIN) Lenses
,”
Proceedings of the Innovative Processing and Synthesis of Ceramics, Glasses and Composites
,
St. Louis, MO
,
Apr. 28–May 1
, pp.
191
201
.
177.
Kumar
,
A.
,
Nune
,
K. C.
,
Murr
,
L. E.
, and
Misra
,
R. D. K.
,
2016
, “
Biocompatibility and Mechanical Behaviour of Three-Dimensional Scaffolds for Biomedical Devices: Process–Structure–Property Paradigm
,”
Int. Mater. Rev.
,
61
(
1
), pp.
20
45
. 10.1080/09506608.2015.1128310
178.
Hsu
,
T.
, and
Lai
,
W.
,
2010
, “
Manufacturing Parts Optimization in the Three-Dimensional Printing Process by the Taguchi Method
,”
J. Chinese Inst. Eng.
,
33
(
1
), pp.
121
130
. 10.1080/02533839.2010.9671604
179.
Butscher
,
A.
,
Bohner
,
M.
,
Hofmann
,
S.
,
Gauckler
,
L.
, and
Müller
,
R.
,
2011
, “
Structural and Material Approaches to Bone Tissue Engineering in Powder-Based Three-Dimensional Printing
,”
Acta Biomater.
,
7
(
3
), pp.
907
920
. 10.1016/j.actbio.2010.09.039
180.
Utela
,
B.
,
Storti
,
D.
,
Anderson
,
R.
, and
Ganter
,
M.
,
2008
, “
A Review of Process Development Steps for New Material Systems in Three Dimensional Printing (3DP)
,”
J. Manuf. Processes
,
10
(
2
), pp.
96
104
. 10.1016/j.jmapro.2009.03.002
181.
ASTM International
,
2015
, “
B527-15: Standard Test Method for Tap Density of Metal Powders and Compounds
,”
ASTM International
,
West Conshohocken, PA
.
182.
ISO
,
2011
, “
ISO 3953:2011 Metallic Powders—Determination of Tap Density
.”
183.
German
,
R. M.
,
2014
,
Sintering : From Empirical Observations to Scientific Principles
,
Butterworth-Heinemann
,
Oxford, UK
.
184.
Hwang
,
H. J.
,
Yasuoka
,
M.
,
Sando
,
M.
,
Toriyama
,
M.
, and
Niihara
,
K.
,
1999
, “
Fabrication, Sinterability, and Mechanical Properties of Lead Zirconate Titanate/Silver Composites
,”
J. Am. Ceram. Soc.
,
82
(
9
), pp.
2417
2422
. 10.1111/j.1151-2916.1999.tb02099.x
185.
Saboori
,
A.
,
Novara
,
C.
,
Pavese
,
M.
,
Badini
,
C.
,
Giorgis
,
F.
, and
Fino
,
P.
,
2017
, “
An Investigation on the Sinterability and the Compaction Behavior of Aluminum/Graphene Nanoplatelets (GNPs) Prepared by Powder Metallurgy
,”
J. Mater. Eng. Perform.
,
26
(
3
), pp.
993
999
. 10.1007/s11665-017-2522-0
186.
Callister
,
W. D.
, and
Rethwisch
,
D. G.
,
2009
,
Materials Science and Engineering: An Introduction
,
Wiley
,
Danvers
.
187.
Cho
,
G.-C.
,
Dodds
,
J.
, and
Santamarina
,
J. C.
,
2006
, “
Particle Shape Effects on Packing Density, Stiffness, and Strength: Natural and Crushed Sands
,”
J. Geotech. Geoenvironmental Eng.
,
132
(
5
), pp.
591
602
. 10.1061/(ASCE)1090-0241(2006)132:5(591)
188.
Yu
,
A. B.
,
Bridgwater
,
J.
, and
Burbidge
,
A.
,
1997
, “
On the Modelling of the Packing of Fine Particles
,”
Powder Technol.
,
92
(
3
), pp.
185
194
. 10.1016/S0032-5910(97)03219-1
189.
Cai
,
K.
,
Román-Manso
,
B.
,
Smay
,
J. E.
,
Zhou
,
J.
,
Osendi
,
M. I.
,
Belmonte
,
M.
, and
Miranzo
,
P.
,
2012
, “
Geometrically Complex Silicon Carbide Structures Fabricated by Robocasting
,”
J. Am. Ceram. Soc.
,
95
(
8
), pp.
2660
2666
. 10.1111/j.1551-2916.2012.05276.x
190.
Haeri
,
S.
,
Wang
,
Y.
,
Ghita
,
O.
, and
Sun
,
J.
,
2017
, “
Discrete Element Simulation and Experimental Study of Powder Spreading Process in Additive Manufacturing
,”
Powder Technol.
,
306
, pp.
45
54
. 10.1016/j.powtec.2016.11.002
191.
Shanjani
,
Y.
, and
Ehsan
,
T.
,
2008
, “
Material Spreading and Compaction in Powder-Based Solid Freeform Fabrication Methods: Mathematical Modeling
,”
Solid Freeform Fabrication Symposium
,
Austin, TX
,
Aug. 4–6
.
192.
Roy
,
N. K.
, and
Cullinan
,
M. A.
,
2015
, “
-SLS of Metals: Design of the Powder Spreader, Powder Bed Actuators and Optics for the System
,”
Solid Freeform Fabrication Symposium
,
Austin, TX
,
Aug. 10–12
, pp.
134
155
.
193.
Apelt
,
D.
,
Theiss
,
F.
,
El-Warrak
,
A. O.
,
Zlinszky
,
K.
,
Bettschart-Wolfisberger
,
R.
,
Bohner
,
M.
,
Matter
,
S.
,
Auer
,
J. A.
, and
Von Rechenberg
,
B.
,
2004
, “
In Vivo Behavior of Three Different Injectable Hydraulic Calcium Phosphate Cements
,”
Biomaterials
,
25
(
7–8
), pp.
1439
1451
. 10.1016/j.biomaterials.2003.08.073
194.
Bredt
,
J. F.
,
Anderson
,
T. C.
, and
Russell
,
D. B.
,
2006
, “
Three Dimensional Printing Material System and Method
,” US Patent No. US7087109B2.
195.
Vacanti
,
J. P.
,
Cima
,
L. G.
, and
Cima
,
M. J.
,
2001
, “
Vascularized Tissue Regeneration Matrices Formed By Solid Free Form Fabrication Techniques
,” US Patent No. US6176874B1.
196.
Meier
,
C.
,
Weissbach
,
R.
,
Weinberg
,
J.
,
Wall
,
W. A.
, and
Hart
,
A. J.
,
2019
, “
Critical Influences of Particle Size and Adhesion on the Powder Layer Uniformity in Metal Additive Manufacturing
,”
J. Mater. Process. Technol.
,
266
, pp.
484
501
. 10.1016/j.jmatprotec.2018.10.037
197.
Katashinskii
,
V. P.
, and
Shtern
,
M. B.
,
1983
, “
Stressed-Strained State of Powder Being Rolled in the Densification Zone. I. Mathematical Model of Rolling in the Densification Zone
,”
Sov. Powder Metall. Met. Ceram.
,
22
(
11
), pp.
882
885
. 10.1007/BF00805540
198.
Jenni
,
M.
,
Schimmer
,
L.
, and
Zauner
,
R.
,
2008
, “
Quantitative Study of Powder Binder Separation of Feedstocks
,”
PIM Int.
,
2
(
4
), pp.
50
55
.
199.
ASTM International
,
2013
, “
B212-13: Standard Test Method for Apparent Density of Free-Flowing Metal Powders Using the Hall Flowmeter Funnel
,”
ASTM International
,
West Conshohocken, PA
.
200.
ASTM International
,
2014
, “
B329-14: Standard Test Method for Apparent Density of Metal Powders and Compounds Using the Scott Volumeter
,”
ASTM International
,
West Conshohocken, PA
.
201.
ASTM International
,
2013
, “
B417 2013: Standard Test Method for Apparent Density of Non-Free-Flowing Metal Powders Using the Carney Funnel
,”
ASTM International
,
West Conshohocken, PA
.
202.
ASTM International
,
2014
, “
B703-10: Standard Test Method for Apparent Density of Metal Powders and Related Compounds Using the Arnold Meter
,”
ASTM International
,
West Conshohocken, PA
.
203.
Elliott
,
A. M.
,
Nandwana
,
P.
,
Siddel
,
D.
, and
Compton
,
B. G.
,
2016
, “
A Method for Measuring Powder Bed Density in Binder Jet Additive Manufacturing Process and the Powder Feedstock Characteristics Influencing the Powder Bed Density
,”
Solid Freeform Fabrication Symposium
,
Austin, TX
,
Aug. 8–10
, pp.
1031
1037
.
204.
ISO
,
2013
, “
ISO 18754:2013 Fine Ceramics (Advanced Ceramics, Advanced Technical Ceramics)—Determination of Density and Apparent Porosity
.”
205.
ASTM International
,
2015
, “
C20-00: Standard Test Methods for Apparent Porosity, Water Absorption, Apparent Specific Gravity, and Bulk Density of Burned Refractory Brick and Shapes by Boiling Water
,”
ASTM International
,
West Conshohocken, PA
.
206.
ASTM International
,
2017
, “
C373-17: Standard Test Methods for Water Absorption and Associate Properties by Vacuum Method for Pressed Ceramic Tiles
,”
ASTM International
,
West Conshohocken, PA
.
207.
ASTM International
,
2017
, “
B962-17: Standard Test Methods for Density of Compacted or Sintered Powder Metallurgy (PM) Products Using Archimedes’ Principle
,”
ASTM International
,
West Conshohocken, PA
.
208.
Abell
,
A. B.
,
Willis
,
K. L.
, and
Lange
,
D. A.
,
1999
, “
Mercury Intrusion Porosimetry and Image Analysis of Cement-Based Materials
,”
J. Colloid Interface Sci.
,
211
(
1
), pp.
39
44
. 10.1006/jcis.1998.5986
209.
Tamari
,
S.
,
2004
, “
Optimum Design of the Constant-Volume Gas Pycnometer for Determining the Volume of Solid Particles
,”
Meas. Sci. Technol.
,
15
(
3
), pp.
549
558
. 10.1088/0957-0233/15/3/007
210.
Sinka
,
I. C.
,
Burch
,
S. F.
,
Tweed
,
J. H.
, and
Cunningham
,
J. C.
,
2004
, “
Measurement of Density Variations in Tablets Using X-Ray Computed Tomography
,”
Int. J. Pharm.
,
271
(
1–2
), pp.
215
224
. 10.1016/j.ijpharm.2003.11.022
211.
Rahaman
,
M. N.
,
2003
,
Ceramic Processing and Sintering
,
Marcel Dekker
,
New York
.
212.
Morikawa
,
H.
,
Minato
,
I.
,
Tomita
,
T.
, and
Iwai
,
S.
,
1975
, “
Anhydrite: A Refinement
,”
Acta Crystallogr.
,
B31
(
8
), pp.
2164
2165
. 10.1107/S0567740875007145
213.
Wang
,
P. Y.
,
Li
,
H. J.
,
Qi
,
L. H.
,
Zeng
,
X. H.
, and
Zuo
,
H. S.
,
2011
, “
Synthesis of Al-TiAl3compound by Reactive Deposition of Molten Al Droplets and Ti Powders
,”
Prog. Nat. Sci.
,
21
(
2
), pp.
153
158
. 10.1016/S1002-0071(12)60049-5
214.
Yang
,
R. Y.
,
Zou
,
R. P.
, and
Yu
,
A. B.
,
2000
, “
Computer Simulation of the Packing of Fine Particles
,”
Phys. Rev. E
,
62
(
3
), pp.
3900
3908
. 10.1103/PhysRevE.62.3900
215.
Litster
,
J. D.
, and
Ennis
,
B. J.
,
2004
,
The Science and Engineering of Granulation Process
,
Springer Science
,
Dordrecht
.
216.
Ma
,
C.
,
Pei
,
Z.
,
Ren
,
X.
, and
Du
,
W.
,
2019
, “
Hierarchical Compositions for the Additive Manufacturing of Materials
,” US Patent No. US 2019/0111585 A1.
217.
Stuer
,
M.
,
Zhao
,
Z.
, and
Bowen
,
P.
,
2012
, “
Freeze Granulation: Powder Processing for Transparent Alumina Applications
,”
J. Eur. Ceram. Soc.
,
32
(
11
), pp.
2899
2908
. 10.1016/j.jeurceramsoc.2012.02.038
218.
Saluja
,
V.
,
Amorij
,
J. P.
,
Kapteyn
,
J. C.
,
de Boer
,
A. H.
,
Frijlink
,
H. W.
, and
Hinrichs
,
W. L. J.
,
2010
, “
A Comparison Between Spray Drying and Spray Freeze Drying to Produce an Influenza Subunit Vaccine Powder for Inhalation
,”
J. Controlled Release
,
144
(
2
), pp.
127
133
. 10.1016/j.jconrel.2010.02.025
219.
Du
,
W.
,
Miao
,
G.
,
Liu
,
L.
,
Pei
,
Z.
, and
Ma
,
C.
,
2019
, “
Binder Jetting Additive Manufacturing of Ceramics: Feedstock Powder Preparation by Spray Freeze Granulation
,”
ASME 2019 14th International Manufacturing Science and Engineering Conference
,
Errie, PA
,
June 10–14
, pp.
1
6
.
220.
Du
,
W.
,
Miao
,
G.
,
Liu
,
L.
,
Pei
,
Z.
, and
Ma
,
C.
,
2019
, “
Binder Jetting Additive Manufacturing of Ceramics: Comparison of Flowability and Sinterability Between Raw and Granulated Powders
,”
ASME 2019 14th International Manufacturing Science and Engineering Conference, American Society of Mechanical Engineers
,
Errie, PA
,
June 10–14
, pp.
1
8
.
221.
Stovall
,
T.
,
de Larrard
,
F.
, and
Buil
,
M.
,
1986
, “
Linear Packing Density Model of Grain Mixtures
,”
Powder Technol.
,
48
(
1
), pp.
1
12
. 10.1016/0032-5910(86)80058-4
222.
Mühler
,
T.
,
Gomes
,
C. M.
,
Heinrich
,
J.
, and
Günster
,
J.
,
2015
, “
Slurry-Based Additive Manufacturing of Ceramics
,”
Int. J. Appl. Ceram. Technol.
,
12
(
1
), pp.
18
25
. 10.1111/ijac.12113
223.
Hu
,
K.
,
Wei
,
Y.
,
Lu
,
Z.
,
Wan
,
L.
, and
Li
,
P.
,
2018
, “
Design of a Shaping System for Stereolithography With High Solid Loading Ceramic Suspensions
,”
3D Print. Addit. Manuf.
,
5
(
4
), pp.
311
318
. 10.1089/3dp.2017.0065
224.
Mamatha
,
S.
,
Biswas
,
P.
,
Ramavath
,
P.
,
Das
,
D.
, and
Johnson
,
R.
,
2018
, “
3D Printing of Complex Shaped Alumina Parts
,”
Ceram. Int.
,
44
(
16
), pp.
19278
19281
. 10.1016/j.ceramint.2018.07.153
225.
Breval
,
E.
,
Cheng
,
J. P.
,
Agrawal
,
D. K.
,
Gigl
,
P.
,
Dennis
,
M.
,
Roy
,
R.
, and
Papworth
,
A. J.
,
2005
, “
Comparison Between Microwave and Conventional Sintering of WC/Co Composites
,”
Mater. Sci. Eng. A
,
391
(
1–2
), pp.
285
295
. 10.1016/j.msea.2004.08.085
226.
Rahaman
,
M. N.
,
2003
,
Ceramic Processing and Sintering
,
CRC Press
,
New York
.
227.
Barsoum
,
M. W.
,
2002
,
Fundamentals of Ceramics
,
CRC Press
,
New York
.
228.
Kang
,
S.-J. L.
,
2005
,
Sintering: Densification, Grain Growth, and Microstructure
,
Elsevier Butterworth-Heinemann
,
Burlington
.
229.
Ainsley
,
C.
, and
Gong
,
H.
,
1999
, “
Precision Sintering of Slip Cast Components
,”
J. Mater. Process. Technol.
,
95
(
1–3
), pp.
201
209
. 10.1016/S0924-0136(99)00294-0
230.
Vermeiren
,
E.
,
2002
, “
The Advantages of All-Round Pressure
,”
Met. Powder Rep.
,
57
(
2
), pp.
18
21
. 10.1016/S0026-0657(02)85007-X
231.
Koizumi
,
M.
, and
Nishihara
,
M.
,
1991
,
Isostatic Pressing: Technology and Applications
,
Springer Science & Business Media
,
New York
.
232.
Balakrishnan
,
A.
,
Pizette
,
P.
,
Martin
,
C. L.
,
Joshi
,
S. V.
, and
Saha
,
B. P.
,
2010
, “
Effect of Particle Size in Aggregated and Agglomerated Ceramic Powders
,”
Acta Mater.
,
58
(
3
), pp.
802
812
. 10.1016/j.actamat.2009.09.058
233.
Boltachev
,
G. S.
, and
Volkov
,
N. B.
,
2010
, “
Size Effect in Nanopowder Compaction
,”
Tech. Phys. Lett.
,
36
(
9
), pp.
823
826
. 10.1134/S1063785010090142
234.
ExOne
, “
ExOne | ACT Whitepaper
,” https://www.exone.com/en-US/ExOne-Triple-ACT-Whitepaper, Accessed January 18, 2020
You do not currently have access to this content.