Abstract

Liquid metal embrittlement (LME) is one of the severe problems of Zn-coated steel in resistance spot welding (RSW). Hence, proper welding schedules for Zn-coated steel are of practical interest. RSW involves a complex interaction between electrical, thermal, and mechanical phenomena. Identification and integration of all these governing physics are almost impossible by performing simple experiments. Hence, phenomenological modeling of RSW has gained a significant attention in the recent past. The complexity of the physical process introduced by the dynamic nature of contact resistance brings challenges for the model. A simplified but effective modeling approach of RSW is proposed where attention is focused on the evaluation of the thermal field using the finite element (FE) method. The interaction of the mechanical and electrical field is performed by the dynamic variation of the contact area, stress concentration, and non-uniform current density distribution in a semi-analytical model. These internal variables of the model are incorporated through the scaling of the governing parameters by the dependence of the transient and converged temperature field within a time step. The transient-dynamic contact resistance is detached from the measurement of total resistance and mapped adaptively by the implicit scheme within a time step of the numerical model. The transient development of the nugget is investigated for dual-phase steel (DP980) with an interrupted test of the dynamic resistance curve. The FE model is validated with experimentally measured results at different process conditions. The characterization of the thermal history from the model relatively identifies the LME phenomena and suggests corresponding modification of the welding schedule.

References

References
1.
Shome
,
M.
, and
Tumuluru
,
M.
,
2015
,
Welding and Joining of Advanced High Strength Steels (AHSS)
,
Woodhead Publishing, Elsevier
,
Cambridge, UK
.
2.
Tamizi
,
M.
,
Pouranvari
,
M.
, and
Movahedi
,
M.
,
2017
, “
Welding Metallurgy of Martensitic Advanced High Strength Steels During Resistance Spot Welding
,”
Sci. Technol. Weld. Join.
,
22
(
4
), pp.
327
335
. 10.1080/13621718.2016.1240979
3.
Tumuluru
,
M.
,
2007
, “
The Effect of Coatings on the Resistance Spot Welding Behavior of 780 MPa Dual-Phase Steel
,”
Weld. J.
,
86
(
6
), pp.
161-s
169-s
.
4.
DiGiovanni
,
C.
,
Biro
,
E.
, and
Zhou
,
N. Y.
,
2019
, “
Impact of Liquid Metal Embrittlement Cracks on Resistance Spot Weld Static Strength
,”
Sci. Technol. Weld. Join.
,
24
(
3
), pp.
218
224
. 10.1080/13621718.2018.1518363
5.
Ashiri
,
R.
,
Haque
,
M. A.
,
Ji
,
C. W.
,
Shamanian
,
M.
,
Salimijazi
,
H. R.
, and
Park
,
Y. D.
,
2015
, “
Supercritical Area and Critical Nugget Diameter for Liquid Metal Embrittlement of Zn-Coated Twining Induced Plasticity Steels
,”
Scr. Mater.
,
109
, pp.
6
10
. 10.1016/j.scriptamat.2015.07.006
6.
Beala
,
C.
,
Kleber
,
X.
,
Fabregue
,
D.
, and
Bouzekri
,
M.
,
2012
, “
Embrittlement of a Zinc Coated High Manganese TWIP Steel
,”
Mater. Sci. Eng. A
,
543
, pp.
76
83
. 10.1016/j.msea.2012.02.049
7.
Bhattacharya
,
D.
,
2018
, “
Liquid Metal Embrittlement During Resistance Spot Welding of Zn-Coated High-Strength Steels
,”
Mater. Sci. Technol.
,
34
(
15
), pp.
1809
1829
. 10.1080/02670836.2018.1461595
8.
Nikoosohbat
,
F.
,
Kheirandish
,
S.
,
Goodarzi
,
M.
,
Pouranvari
,
M.
, and
Marashi
,
S. P. H.
,
2010
, “
Microstructure and Failure Behaviour of Resistance Spot Welded DP980 Dual Phase Steel
,”
Mater. Sci. Technol.
,
26
(
6
), pp.
738
744
. 10.1179/174328409X414995
9.
Sawanishi
,
C.
,
Ogura
,
T.
,
Taniguchi
,
K.
,
Ikeda
,
R.
,
Oi
,
K.
,
Yasuda
,
K.
, and
Hirose
,
A.
,
2014
, “
Mechanical Properties and Microstructures of Resistance Spot Welded DP980 Steel Joints Using Pulsed Current Pattern
,”
Sci. Technol. Weld. Join.
,
19
(
1
), pp.
52
59
. 10.1179/1362171813Y.0000000165
10.
Kim
,
Y. G.
,
Kim
,
I. J.
,
Kim
,
J. S.
,
Chung
,
Y. I.
, and
Choi
,
D. Y.
,
2014
, “
Evaluation of Surface Crack in Resistance Spot Welds of Zn-Coated Steel
,”
Mater. Trans.
,
55
(
1
), pp.
171
175
. 10.2320/matertrans.M2013244
11.
DiGiovanni
,
C.
,
Bag
,
S.
,
Mehling
,
C.
,
Choi
,
K. W.
,
Macwan
,
A.
,
Biro
,
E.
, and
Zhou
,
N. Y.
,
2019
, “
Effect of Ramping Current on Liquid Metal Embrittlement Crack Development
,”
Weld. World
,
63
(
6
), pp.
1583
1591
. 10.1007/s40194-019-00790-5
12.
Wintjes
,
E.
,
DiGiovanni
,
C.
,
He
,
L.
,
Bag
,
S.
,
Goodwin
,
F.
,
Biro
,
E.
, and
Zhou
,
Y.
,
2019
, “
Effect of Multiple Pulse Resistance Spot Welding Schedules on Liquid Metal Embrittlement Severity
,”
ASME J. Manuf. Sci. Eng.
,
141
(
10
), p.
101001
. 10.1115/1.4044099
13.
Dancette
,
S.
,
Massardier-Jourdan
,
V.
,
Fabrègue
,
D.
,
Merlin
,
J.
,
Dupuy
,
T.
, and
Bouzekri
,
M.
,
2011
, “
HAZ Microstructures and Local Mechanical Properties of High Strength Steels Resistance Spot Welds
,”
ISIJ Int.
,
51
(
1
), pp.
99
107
. 10.2355/isijinternational.51.99
14.
Gedeon
,
S. A.
, and
Eagar
,
T. W.
,
1986
, “
Resistance Spot Welding of Galvanized Steel: Part I. Material Variations and Process Modifications
,”
Met. Trans. B
,
17
(
4
), pp.
879
885
. 10.1007/BF02657151
15.
Marya
,
M.
, and
Gayden
,
X. Q.
,
2005
, “
Development of Requirements for Resistance Spot Welding Dual-Phase (DP600) Steels Part 1—The Causes of Interfacial Fracture
,”
Weld. J.
,
84
(
11
), pp.
172s
182s
.
16.
Song
,
Q.
,
Zhang
,
W.
, and
Bay
,
N.
,
2005
, “
An Experimental Study Determines the Electrical Contact Resistance in Resistance Welding
,”
Weld. J.
,
84
(
5
), pp.
73s
76s
.
17.
Hamedi
,
M.
, and
Atashparva
,
M.
,
2017
, “
A Review of Electrical Contact Resistance Modeling in Resistance Spot Welding
,”
Weld. World
,
61
(
2
), pp.
269
290
. 10.1007/s40194-016-0419-4
18.
Zhou
,
K.
, and
Cai
,
L.
,
2014
, “
Study on Effect of Electrode Force on Resistance Spot Welding Process
,”
J. Appl. Phys.
,
116
(
8
), p.
084902
. 10.1063/1.4893968
19.
Babu
,
S. S.
,
Santella
,
M. L.
,
Feng
,
Z.
,
Riemer
,
B. W.
, and
Cohron
,
J. W.
,
2001
, “
Empirical Model of Effects of Pressure and Temperature on Electrical Contact Resistance of Metals
,”
Sci. Technol. Weld. Join.
,
6
(
3
), pp.
126
132
. 10.1179/136217101101538631
20.
Tan
,
W.
,
Zhou
,
Y.
,
Kerr
,
H. W.
, and
Lawson
,
S.
,
2004
, “
A Study of Dynamic Resistance During Small Scale Resistance Spot Welding of Thin Ni Sheets
,”
J. Phys. D: Appl. Phys.
,
37
(
14
), pp.
1998
2008
. 10.1088/0022-3727/37/14/017
21.
Khan
,
J. A.
,
Xu
,
L.
, and
Chao
,
Y. J.
,
1999
, “
Prediction of Nugget Development During Resistance Spot Welding Using Coupled Thermal–Electrical–Mechanical Model
,”
Sci. Technol. Weld. Join.
,
4
(
4
), pp.
201
207
. 10.1179/136217199101537789
22.
Wei
,
P. S.
, and
Wu
,
T. H.
,
2012
, “
Electrical Contact Resistance Effect on Resistance Spot Welding
,”
Int. J. Heat Mass Transfer
,
55
(
11–12
), pp.
3316
3324
. 10.1016/j.ijheatmasstransfer.2012.01.040
23.
Wang
,
S. C.
, and
Wei
,
P. S.
,
2001
, “
Modeling Dynamic Electrical Resistance During Resistance Spot Welding
,”
ASME J. Heat Transfer
,
123
(
3
), pp.
576
585
. 10.1115/1.1370502
24.
Gedeon
,
S. A.
, and
Eagar
,
T. W.
,
1986
, “
Resistance Spot Welding of Galvanized Steel: Part II—Mechanisms of Spot Weld Nugget Formation
,”
Met. Trans. B
,
17
(
4
), pp.
887
901
. 10.1007/BF02657152
25.
Feulvarch
,
E.
,
Rogeon
,
P.
,
Carré
,
P.
,
Robin
,
V.
,
Sibilia
,
G.
, and
Bergheau
,
J. M.
,
2006
, “
Resistance Spot Welding Process: Experimental and Numerical Modeling of the Weld Growth Mechanisms With Consideration of Contact Conditions
,”
Numer. Heat Transfer Part A: Appl.
,
49
(
4
), pp.
345
367
. 10.1080/10407780500359760
26.
Ryazantsev
,
V. I.
, and
Fedoseev
,
V. A.
,
1991
, “
Analytical Determination of the Actual Contact Area in Spot Welding Aluminium Alloys
,”
Weld. Int.
,
5
(
5
), pp.
378
381
. 10.1080/09507119109446754
27.
De
,
A.
,
2002
, “
Finite Element Modelling of Resistance Spot Welding of Aluminium With Spherical tip Electrodes
,”
Sci. Technol. Weld. Join.
,
7
(
2
), pp.
119
124
. 10.1179/136217102225002998
28.
Wei
,
P. S.
,
Wang
,
S. C.
, and
Lin
,
M. S.
,
1996
, “
Transport Phenomena During Resistance Spot Welding
,”
ASME J. Heat Transfer
,
118
(
3
), pp.
762
773
. 10.1115/1.2822697
29.
Gupta
,
O. P.
, and
De
,
A.
,
1998
, “
An Improved Numerical Modeling for Resistance Spot Welding Process and Its Experimental Verification
,”
ASME J. Manuf. Sci. Eng.
,
120
(
2
), pp.
246
251
. 10.1115/1.2830120
30.
Chang
,
B. H.
,
Du
,
D.
,
Chen
,
Q.
, and
Zhou
,
Y.
,
2007
, “
Studies on Effects of Pitting Morphology in Resistance Spot Welding of Aluminium Alloy
,”
Sci. Technol. Weld. Join.
,
12
(
1
), pp.
67
72
. 10.1179/174329306X147526
31.
Chang
,
B. H.
,
Zhou
,
Y.
,
Lum
,
I.
, and
Du
,
D.
,
2005
, “
Finite Element Analysis of Effect of Electrode Pitting in Resistance Spot Welding of Aluminium Alloy
,”
Sci. Technol. Weld. Join.
,
10
(
1
), pp.
61
66
. 10.1179/174329305X19330
32.
Raoelison
,
R. N.
,
Fuentes
,
A.
,
Pouvreau
,
C.
,
Rogeon
,
P.
,
Carré
,
P.
, and
Dechalotte
,
F.
,
2014
, “
Modeling and Numerical Simulation of the Resistance Spot Welding of Zinc Coated Steel Sheets Using Rounded tip Electrode: Analysis of Required Conditions
,”
Appl. Math. Model.
,
38
(
9–10
), pp.
2505
2521
. 10.1016/j.apm.2013.10.060
33.
Zhao
,
C.
,
Luo
,
Z.
,
Li
,
Y.
,
Feng
,
M.
, and
Xuan
,
W.
,
2016
, “
Inverse Heat Conduction Model for the Resistance Spot Welding of Aluminum Alloy
,”
Numer. Heat Transfer, Part A: Appl.
,
70
(
12
), pp.
1330
1344
. 10.1080/10407782.2016.1244391
34.
Loulou
,
T.
, and
Bardon
,
J. P.
,
2001
, “
Estimation of Thermal Contact Conductance During Resistance Spot Welding
,”
Exp. Heat Transfer
,
14
(
4
), pp.
251
264
. 10.1080/089161501317098308
35.
American Welding Society
,
2012
, “
American Welding Society: Test Method for Evaluating the Resistance Spot Welding Behavior of Automotive Sheet Steel Materials (AWS D 8.9M)
,” pp.
1
107
.
36.
Holliday
,
R.
,
Parker
,
J. D.
, and
Williams
,
N. T.
,
1996
, “
Relative Contribution of Electrode Tip Growth Mechanism in Spot Welding Zinc Coated Steels
,”
Weld. World
,
37
(
4
), pp.
186
193
.
37.
Chen
,
Z.
, and
Zhou
,
Y.
,
2006
, “
Surface Modification of Resistance Welding Electrode by Electro-Spark Deposited Composite Coatings: Part 2. Metallurgical Behavior During Welding
,”
Surf. Coat. Technol.
,
6
(
6
), pp.
2419
2430
. 10.1016/j.surfcoat.2006.04.010
38.
Zou
,
J.
,
Zhao
,
Q.
, and
Chen
,
Z.
,
2019
, “
Surface Modified Long-Life Electrode for Resistance Spot Welding of Zn-Coated Steel
,”
J. Mater. Processing Technol.
,
209
(
8
), pp.
4141
4146
. 10.1016/j.jmatprotec.2008.10.005
39.
Murugan
,
S. P.
,
Mahmud
,
K.
,
Ji
,
C.
,
Jo
,
I.
, and
Park
,
Y. D.
,
2019
, “
Critical Design Parameters of the Electrode for Liquid Metal Embrittlement Cracking in Resistance Spot Welding
,”
Weld. World
,
63
(
6
), pp.
1613
1632
. 10.1007/s40194-019-00797-y
40.
Böhne
,
C.
,
Meschut
,
G.
,
Biegler
,
M.
,
Frei
,
J.
, and
Rethmeier
,
M.
,
2019
, “
Prevention of Liquid Metal Embrittlement Cracks in Resistance Spot Welds by Adaption of Electrode Geometry
,”
Sci. Technol. Weld. Join.
, 10.1080/13621718.2019.1693731
41.
Wyant
,
R. A.
,
1946
, “
Measurement and Effect of Contact Resistance in Spot Welding
,”
Elect. Eng.
,
65
(
1
), pp.
26
33
. 10.1109/EE.1946.6441525
42.
Wang
,
L.
,
Hou
,
Y.
,
Zhang
,
H.
,
Zhao
,
J.
,
Xi
,
T.
,
Qi
,
X.
, and
Li
,
Y.
,
2016
, “
A New Measurement Method for the Dynamic Resistance Signal During the Resistance Spot Welding Process
,”
Meas. Sci. Technol.
,
27
(
9
), p.
095009
. 10.1088/0957-0233/27/9/095009
43.
Thornton
,
P. H.
,
Krause
,
A. R.
, and
Davies
,
R. G.
,
1997
, “
Contact Resistance of Aluminum
,”
Weld. J.
,
76
(
8
), pp.
331s
341s
.
44.
Lee
,
E. H.
,
Yang
,
D. Y.
,
Yoon
,
J. W.
, and
Yang
,
W. H.
,
2015
, “
Numerical Modeling and Analysis for Forming Process of Dual-Phase 980 Steel Exposed to Infrared Local Heating
,”
Int. J. Solids Struct.
,
75–76
, pp.
211
224
. 10.1016/j.ijsolstr.2015.08.014
45.
Ina
,
K.
, and
Koizumi
,
H.
,
2004
, “
Penetration of Liquid Metals Into Solid Metals and Liquid Metal Embrittlement
,”
Mater. Sci. Eng. A
,
387–389
(
1
), pp.
390
394
. 10.1016/j.msea.2004.05.042
46.
Wintjes
,
E.
,
DiGiovanni
,
C.
,
He
,
L.
,
Biro
,
E.
, and
Zhou
,
N. Y.
,
2019
, “
Quantifying the Link Between Crack Distribution and Resistance Spot Weld Strength Reduction in Liquid Metal Embrittlement Susceptible Steels
,”
Weld World
,
63
(
3
), pp.
807
814
. 10.1007/s40194-019-00712-5
47.
Chang
,
B. H.
,
Li
,
M. V.
, and
Zhou
,
Y.
,
2001
, “
Comparative Study of Small Scale and ‘Large Scale’ Resistance Spot Welding
,”
Sci. Technol. Weld. Join.
,
6
(
5
), pp.
273
280
. 10.1179/136217101101538875
48.
Nied
,
H. A.
,
1984
, “
The Finite Element Modeling of the Resistance Spot Welding Process
,”
Weld. J.
,
63
(
4
), pp.
123s
132s
.
49.
Gould
,
J. E.
,
Khurana
,
S. P.
, and
Li
,
T.
,
2006
, “
Predictions of Microstructures When Welding Automotive Advanced High-Strength Steels
,”
Weld. J.
,
86
(
5
), pp.
111s
116s
.
50.
He
,
X.
,
Fuerschbach
,
P. W.
, and
DebRoy
,
T.
,
2003
, “
Heat Transfer and Fluid Flow During Laser Spot Welding of SS 304 Stainless Steel
,”
J. Phys. D: Appl. Phys.
,
36
(
12
), pp.
1388
1398
. 10.1088/0022-3727/36/12/306
51.
Zhang
,
W.
,
Roy
,
G. G.
,
Elmer
,
J. W.
, and
DebRoy
,
T.
,
2003
, “
Modeling of Heat Transfer and Fluid Flow During gas Tungsten Arc Spot Welding of low Carbon Steel’
,”
J. Appl. Phys.
,
93
(
5
), pp.
3022
3033
. 10.1063/1.1540744
You do not currently have access to this content.