Abstract

Ultrasonic burnishing is usually applied to make machined surface modification. The acoustic softening effect caused by ultrasonic vibration is beneficial to the machining of difficult-to-cut materials. In the present work, a burnishing force prediction model was proposed for rotary ultrasonic burnishing of titanium alloy Ti–6Al–4V, whose surface had been machined with the face milling process. Firstly, the contact between the burnishing roller and one single milling mark was analyzed with plane strain assumption based on the Boussinesq–Flamant contact problem. Then, the effect of ultrasonic softening on the yield stress of Ti–6Al–4V was investigated. The critical contact width and contact load that the burnishing roller crushed on one single milling mark were examined to confirm the feasibility of the proposed ultrasonic burnishing force prediction model. The experimental verifications were carried out at various ultrasonic powers. The burnishing forces from experiment measurements were consistent with the calculated results from the proposed model. The mean deviations between theoretical and experimental results of the ultrasonic burnishing force were 10.4%, 12.2%, and 15.2%, corresponding to the ultrasonic power at the level of 41 W, 158 W, and 354 W, respectively.

References

References
1.
Li
,
S.
,
Wu
,
Y.
,
Nomura
,
M.
, and
Fujii
,
T.
,
2018
, “
Fundamental Machining Characteristics of Ultrasonic-Assisted Electrochemical Grinding of Ti–6Al–4V
,”
ASME J. Manuf. Sci. Eng.
,
140
(
7
), p.
071009
. 10.1115/1.4039855
2.
Seemikeri
,
C. Y.
,
Brahmankar
,
P. K.
, and
Mahagaonkar
,
S. B.
,
2008
, “
Low Plasticity Burnishing: An Innovative Manufacturing Method for Biomedical Applications
,”
ASME J. Manuf. Sci. Eng.
,
130
(
2
), p.
021008
. 10.1115/1.2896121
3.
Hiegemann
,
L.
, and
Erman Tekkaya
,
A.
,
2018
, “
Ball Burnishing Under High Velocities Using a New Rolling Tool Concept
,”
ASME J. Manuf. Sci. Eng.
,
140
(
4
), p.
041008
. 10.1115/1.4037431
4.
Badr
,
O. M.
,
Rolfe
,
B.
, and
Weiss
,
M.
,
2018
, “
Effect of the Forming Method on Part Shape Quality in Cold Roll Forming High Strength Ti-6Al-4V Sheet
,”
J. Manuf. Process.
,
32
, pp.
513
521
. 10.1016/j.jmapro.2018.03.022
5.
Paktinat
,
H.
, and
Amini
,
S.
,
2018
, “
Experiments and Finite Element Simulation of Ultrasonic Assisted Drilling
,”
ASME J. Manuf. Sci. Eng.
,
140
(
10
), p.
101002
. 10.1115/1.4040321
6.
Moghaddas
,
M. A.
,
Short
,
M. A.
,
Wiley
,
N. R.
,
Yi
,
A. Y.
, and
Graff
,
K. F.
,
2018
, “
Improving Productivity in an Ultrasonic-Assisted Drilling Vertical Machining Center
,”
ASME J. Manuf. Sci. Eng.
,
140
(
6
), p.
061002
. 10.1115/1.4039109
7.
Baraheni
,
M.
, and
Amini
,
S.
,
2019
, “
Predicting Subsurface Damage in Silicon Nitride Ceramics Subjected to Rotary Ultrasonic Assisted Face Grinding
,”
Ceram. Int.
,
45
(
8
), pp.
10086
10096
. 10.1016/j.ceramint.2019.02.055
8.
Baraheni
,
M.
,
Tabatabaeian
,
A.
,
Amini
,
S.
, and
Ghasemi
,
A. R.
,
2019
, “
Parametric Analysis of Delamination in GFRP Composite Profiles by Performing Rotary Ultrasonic Drilling Approach: Experimental and Statistical Study
,”
Composites, Part B
,
172
(
8
), pp.
612
620
. 10.1016/j.compositesb.2019.05.057
9.
Gao
,
J.
, and
Jin
,
X. L.
,
2019
, “
Effects of Ultrasonic Vibration Assistance on Chip Formation Mechanism in Cutting of Ti–6Al–4V
,”
ASME J. Manuf. Sci. Eng.
,
141
(
12
), p.
121007
. 10.1115/1.4045129
10.
Baraheni
,
M.
, and
Amini
,
S.
,
2018
, “
Feasibility Study of Delamination in Rotary Ultrasonic-Assisted Drilling of Glass Fiber Reinforced Plastics
,”
J. Reinf. Plast. Compos.
,
37
(
1
), pp.
3
12
. 10.1177/0731684417729565
11.
Jerez-Mesa
,
R.
,
Travieso-Rodriguez
,
J. A.
,
Gomez-Gras
,
G.
, and
Lluma-Fuentes
,
J.
,
2018
, “
Development, Characterization and Test of an Ultrasonic Vibration-Assisted Ball Burnishing Tool
,”
J. Mater. Process. Technol.
,
257
(
1
), pp.
203
212
. 10.1016/j.jmatprotec.2018.02.036
12.
Jerez-Mesa
,
R.
,
Travieso-Rodríguez
,
J. A.
,
Landon
,
Y.
,
Dessein
,
G.
,
Lluma-Fuentes
,
J.
, and
Wagner
,
V.
,
2019
, “
Comprehensive Analysis of Surface Integrity Modification of Ball-End Milled Ti-6Al-4V Surfaces Through Vibration-Assisted Ball Burnishing
,”
J. Mater. Process. Technol.
,
267
, pp.
230
240
. 10.1016/j.jmatprotec.2018.12.022
13.
Jerez-Mesa
,
R.
,
Landon
,
Y.
,
Travieso-Rodriguez
,
J. A.
,
Dessein
,
G.
,
Lluma-Fuentes
,
J.
, and
Wagner
,
V.
,
2018
, “
Topological Surface Integrity Modification of AISI 1038 Alloy After Vibration-Assisted Ball Burnishing
,”
Surf. Coat. Technol.
,
349
, pp.
364
377
. 10.1016/j.surfcoat.2018.05.061
14.
Huuki
,
J.
, and
Laakso
,
S. V. A.
,
2017
, “
Surface Improvement of Shafts by the Diamond Burnishing and Ultrasonic Burnishing Techniques
,”
Int. J. Mach. Mach. Mater.
,
19
, pp.
246
259
. 10.1504/ijmmm.2017.10004737
15.
Teimouri
,
R.
,
Amini
,
S.
, and
Bami
,
A. B.
,
2018
, “
Evaluation of Optimized Surface Properties and Residual Stress in Ultrasonic Assisted Ball Burnishing of AA6061-T6
,”
Measurement
,
116
, pp.
129
139
. 10.1016/j.measurement.2017.11.001
16.
Khan
,
M. K.
,
Fitzpatrick
,
M. E.
,
Wang
,
Q. Y.
,
Pyoun
,
Y. S.
, and
Amanov
,
A.
,
2018
, “
Effect of Ultrasonic Nanocrystal Surface Modification on Residual Stress and Fatigue Cracking in Engineering Alloys
,”
Fatigue Fract. Eng. Mater. Struct.
,
41
(
4
), pp.
844
855
. 10.1111/ffe.12732
17.
Amini
,
S.
,
Bagheri
,
A.
, and
Teimouri
,
R.
,
2018
, “
Ultrasonic-Assisted Ball Burnishing of Aluminum 6061 and AISI 1045 Steel
,”
Mater. Manuf. Processes
,
33
(
11
), pp.
1250
1259
. 10.1080/10426914.2017.1364862
18.
Liu
,
Y.
,
Wang
,
L.
, and
Wang
,
D.
,
2011
, “
Finite Element Modeling of Ultrasonic Surface Rolling Process
,”
J. Mater. Process. Technol.
,
211
(
12
), pp.
2106
2113
. 10.1016/j.jmatprotec.2011.07.009
19.
Huuki
,
J.
,
Hornborg
,
M.
, and
Juntunen
,
J.
,
2014
, “
Influence of Ultrasonic Burnishing Technique on Surface Quality and Change in the Dimensions of Metal Shafts
,”
J. Eng.
,
2014
, pp.
1
8
. 10.1155/2014/124247
20.
Teimouri
,
R.
, and
Amini
,
S.
,
2019
, “
Analytical Modeling of Ultrasonic Surface Burnishing Process: Evaluation of Through Depth Localized Strain
,”
Int. J. Mech. Sci.
,
151
, pp.
118
132
. 10.1016/j.ijmecsci.2018.11.008
21.
Li
,
J. K.
,
Mei
,
Y.
,
Duo
,
W.
, and
Renzhi
,
W.
,
1991
, “
Mechanical Approach to the Residual Stress Field Induced by Shot Peening
,”
Mater. Sci. Eng., A
,
147
(
2
), pp.
167
173
. 10.1016/0921-5093(91)90843-C
22.
Teimouri
,
R.
,
Amini
,
S.
, and
Ashrafi
,
H.
,
2019
, “
An Analytical Model of Burnishing Forces Using Slab Method
,”
Proc. Inst. Mech. Eng. Part E: J. Process Mech. Eng.
,
233
(
3
), pp.
630
642
. 10.1177/0954408918781481
23.
Hiegemann
,
L.
,
Weddeling
,
C.
,
Khalifa
,
N. B.
, and
Tekkaya
,
A. E.
,
2015
, “
Prediction of Roughness After Ball Burnishing of Thermally Coated Surfaces
,”
J. Mater. Process. Technol.
,
217
, pp.
193
201
. 10.1016/j.jmatprotec.2014.11.008
24.
Li
,
F. L.
,
Xia
,
W.
,
Zhou
,
Z. Y.
,
Zhao
,
J.
, and
Tang
,
Z. Q.
,
2012
, “
Analytical Prediction and Experimental Verification of Surface Roughness During the Burnishing Process
,”
Int. J. Mach. Tool. Manuf.
,
62
, pp.
67
75
. 10.1016/j.ijmachtools.2012.06.001
25.
Korzynski
,
M.
,
2007
, “
Modeling and Experimental Validation of the Force–Surface Roughness Relation for Smoothing Burnishing With a Spherical Tool
,”
Int. J. Mach. Tool. Manuf.
,
47
(
12–13
), pp.
1956
1964
. 10.1016/j.ijmachtools.2007.03.002
26.
Teimouri
,
R.
, and
Amini
,
S.
,
2019
, “
Analytical Modeling of Ultrasonic Burnishing Process: Evaluation of Active Forces
,”
Measurement
,
131
, pp.
654
663
. 10.1016/j.measurement.2018.09.023
27.
Geng
,
D. X.
,
Liu
,
Y. H.
,
Shao
,
Z. Y.
,
Zhang
,
M. L.
,
Jiang
,
X. G.
, and
Zhang
,
D. Y.
,
2020
, “
Delamination Formation and Suppression During Rotary Ultrasonic Elliptical Machining of CFRP
,”
Compos. Part B Eng.
,
183
, p.
107698
. 10.1016/j.compositesb.2019.107698
28.
Geng
,
D. X.
,
Liu
,
Y. H.
,
Shao
,
Z. Y.
,
Lu
,
Z. H.
,
Cai
,
J.
,
Li
,
X.
,
Jiang
,
X. G.
, and
Zhang
,
D. Y.
,
2019
, “
Delamination Formation, Evaluation and Suppression During Drilling of Composite Laminates: A Review
,”
Compos. Struct.
,
216
, pp.
168
186
. 10.1016/j.compstruct.2019.02.099
29.
Zhao
,
J.
,
Liu
,
Z. Q.
,
Chen
,
L. X.
, and
Hua
,
Y.
,
2019
, “
Ultrasonic-Induced Phase Redistribution and Acoustic Hardening for Rotary Ultrasonic Roller Burnished Ti-6Al-4V
,”
Metall. Mater. Trans. A
, 10.1007/s11661-019-05594-2
30.
Zhao
,
J.
, and
Liu
,
Z. Q.
,
2020
, “
Plastic Flow Behavior for Machined Surface Material Ti-6Al-4V With Rotary Ultrasonic Burnishing
,”
J. Mater. Res. Technol.
, 10.1016/j.jmrt.2019.12.071
31.
Wang
,
H.
,
Hu
,
Y. B.
,
Cong
,
W. L.
, and
Hu
,
Z. L.
,
2019
, “
A Mechanistic Model on Feeding-Directional Cutting Force in Surface Grinding of CFRP Composites Using Rotary Ultrasonic Machining With Horizontal Ultrasonic Vibration
,”
Int. J. Mech. Sci.
,
155
, pp.
450
460
. 10.1016/j.ijmecsci.2019.03.009
32.
Ni
,
C. B.
,
Zhu
,
L. D.
,
Liu
,
C. F.
, and
Yang
,
Z. C.
,
2018
, “
Analytical Modeling of Tool-Workpiece Contact Rate and Experimental Study in Ultrasonic Vibration-Assisted Milling of Ti–6Al–4V
,”
Int. J. Mech. Sci.
,
142–143
, pp.
97
111
. 10.1016/j.ijmecsci.2018.04.037
33.
Clastornik
,
J. J.
,
Eisenberger
,
M. M.
,
Yankelevsky
,
D. Z.
, and
Adin
,
M. A.
,
1986
, “
Beams on Variable Winkler Elastic Foundation
,”
ASME J. Appl. Mech.
,
53
(
4
), pp.
925
928
. 10.1115/1.3171882
34.
Timoshenko
,
S.
, and
Goodier
,
J. N.
,
1970
,
Theory of Elasticity
, 3rd ed.,
McGraw-Hill
,
New York
.
35.
Yao
,
Z. H.
,
Kim
,
G. Y.
,
Wang
,
Z. H.
,
Faidley
,
L. A.
,
Zou
,
Q. Z.
,
Mei
,
D. Q.
, and
Chen
,
Z. C.
,
2012
, “
Acoustic Softening and Residual Hardening in Aluminum: Modeling and Experiments
,”
Int. J. Plast.
,
39
, pp.
75
87
. 10.1016/j.ijplas.2012.06.003
36.
Huang
,
H.
,
Pequegnat
,
A.
,
Chang
,
B. H.
,
Mayer
,
M.
,
Du
,
D.
, and
Zhou
,
Y.
,
2009
, “
Influence of Superimposed Ultrasound on Deformability of Cu
,”
J. Appl. Phys.
,
106
(
11
), p.
113514
. 10.1063/1.3266170
37.
Fartashvand
,
V.
,
Abdullah
,
A.
, and
Sadough Vanini
,
S. A.
,
2017
, “
Investigation of Ti-6Al-4V Alloy Acoustic Softening
,”
Ultrason. Sonochem.
,
38
, pp.
744
749
. 10.1016/j.ultsonch.2016.07.007
38.
Sapozhnikov
,
O. A.
,
2015
, “High-Intensity Ultrasonic Waves in Fluids: Nonlinear Propagation and Effects,”
Power Ultrasonics
,
J. A.
Gallego-Juarez
, and
K. F.
Graff
, eds.,
Woodhead Publishing
,
Cambridge, UK
, pp.
9
35
.
39.
Qingmei
,
L.
,
Yong
,
Z.
,
Yaoling
,
S.
,
Feipeng
,
Q.
,
Qijie
,
Z.
,
2007
, “
Influence of Ultrasonic Vibration on Mechanical Properties and Microstructure of 1Cr18Ni9Ti Stainless Steel
,”
Mater. Design
,
28
(
6
), pp.
1949
1952
. 10.1016/j.matdes.2006.04.025
40.
Kadin
,
Y.
,
Kligerman
,
Y.
, and
Etsion
,
I.
,
2006
, “
Multiple Loading–Unloading of an Elastic–Plastic Spherical Contact
,”
Int. J. Solids Struct.
,
43
(
22–23
), pp.
7119
7127
. 10.1016/j.ijsolstr.2006.03.006
41.
Jamari
,
J.
, and
Schipper
,
D. J.
,
2008
, “
Deterministic Repeated Contact of Rough Surfaces
,”
Wear
,
264
(
3–4
), pp.
347
356
. 10.1016/j.wear.2007.03.024
42.
Zhao
,
J.
, and
Liu
,
Z. Q.
,
2016
, “
Investigations of Ultrasonic Frequency Effects on Surface Deformation in Rotary Ultrasonic Roller Burnishing Ti-6Al-4V
,”
Mater. Des.
,
107
, pp.
238
249
. 10.1016/j.matdes.2016.06.024
You do not currently have access to this content.