Abstract

Among all the materials, diamond turning of heterogeneous materials like copper beryllium (CuBe) poses serious machining challenges as the heterogeneity in the workpiece affects the quality of generated surface. Therefore, the present study is aimed to understand the effect of tool–workpiece interactions on the surface characteristics of heterogeneous CuBe workpiece material. Experiments and molecular dynamics simulation (MDS) were carried out to analyze the various surface and subsurface interactions during cutting. Results from the experiments on both the materials for whole cutting length show that the average roughness values on CuBe-machined surface are found to be ∼48% higher than those of copper (Cu). Scanning electron microscopy (SEM) results show that while deterministic lay pattern is obtained in the case of Cu, the CuBe-machined surface possesses near-random lay pattern, which is also reflected by the fast Fourier transform (FFT) spectrum of surface roughness profiles. Experimental and MDS results reveal that the hard precipitate suffers cracks which propagate vertically as well as radially and as the tool travels from Cu-rich phase to Be-rich phase, ductile to brittle transition in cutting mechanism is observed. Furthermore, it is observed that diamond-turned Cu and CuBe surfaces are contaminated by the oxides of C and Cu. MDS results verify the mechanisms involved in the surface and subsurface interactions during diamond turning.

References

1.
Hung
,
N. P.
,
Zhong
,
Z. W.
,
Lee
,
K. K.
, and
Chai
,
C. F.
,
1999
, “
Precision Grinding and Facing of Copper-Beryllium Alloys
,”
Precis. Eng.
,
23
(
4
), pp.
293
304
. 10.1016/S0141-6359(99)00024-0
2.
Zhang
,
G.
,
To
,
S.
, and
Zhang
,
S.
,
2016
, “
Relationships of Tool Wear Characteristics to Cutting Mechanics, Chip Formation, and Surface Quality in Ultra-Precision Fly Cutting
,”
Int. J. Adv. Manuf. Technol.
,
83
(
1–4
), pp.
133
144
. 10.1007/s00170-015-7483-6
3.
Yingfei
,
G.
,
Jiuhua
,
X.
, and
Hui
,
Y.
,
2010
, “
Diamond Tools Wear and Their Applicability When Ultra-Precision Turning of SiCp/2009Al Matrix Composite
,”
Wear
,
269
(
11–12
), pp.
699
708
. 10.1016/j.wear.2009.09.002
4.
Yue
,
X.
,
Xu
,
M.
,
Du
,
W.
, and
Chu
,
C.
,
2017
, “
Effect of Cutting Edge Radius on Surface Roughness in Diamond Tool Turning of Transparent MgAl2O4 Spinel Ceramic
,”
Opt. Mater.
,
71
, pp.
129
135
. 10.1016/j.optmat.2016.04.017
5.
Zhang
,
S. J.
,
To
,
S.
,
Wang
,
S. J.
, and
Zhu
,
Z. W.
,
2015
, “
A Review of Surface Roughness Generation in Ultra-Precision Machining
,”
Int. J. Mach. Tools Manuf.
,
91
, pp.
76
95
. 10.1016/j.ijmachtools.2015.02.001
6.
Rahman
,
M. A.
,
Amrun
,
M. R.
,
Rahman
,
M.
, and
Kumar
,
A. S.
,
2017
, “
Variation of Surface Generation Mechanisms in Ultra-Precision Machining Due to Relative Tool Sharpness (RTS) and Material Properties
,”
Int. J. Mach. Tools Manuf.
,
115
, pp.
15
28
. 10.1016/j.ijmachtools.2016.11.003
7.
Tauhiduzzaman
,
M.
, and
Veldhuis
,
S. C.
,
2014
, “
Effect of Material Microstructure and Tool Geometry on Surface Generation in Single Point Diamond Turning
,”
Precis. Eng.
,
38
(
3
), pp.
481
491
. 10.1016/j.precisioneng.2014.01.002
8.
Wang
,
S. J.
,
Chen
,
X.
,
To
,
S.
,
Ouyang
,
X. B.
,
Liu
,
Q.
,
Liu
,
J. W.
, and
Lee
W. B.
,
2015
, “
Effect of Cutting Parameters on Heat Generation in Ultra-Precision Milling of Aluminum Alloy 6061
,”
Int. J. Adv. Manuf. Technol.
,
80
(
5–8
), pp.
1265
1275
. 10.1007/s00170-015-7072-8
9.
Wang
,
S. J.
,
To
,
S.
, and
Cheung
,
C. F.
,
2012
, “
Effect of Workpiece Material on Surface Roughness in Ultraprecision Raster Milling
,”
Mater. Manuf. Processes
,
27
(
10
), pp.
1022
1028
. 10.1080/10426914.2011.654165
10.
Moronuki
,
N.
,
Liang
,
Y.
, and
Furukawa
,
Y.
,
1994
, “
Experiments on the Effect of Material Properties on Microcutting Processes
,”
Precis. Eng.
,
16
(
2
), pp.
124
131
. 10.1016/0141-6359(94)90197-X
11.
Pan
,
Z.
,
Feng
,
Y.
, and
Liang
,
S. Y.
,
2017
, “
Material Microstructure Affected Machining: A Review
,”
Manuf. Rev.
,
4
, pp.
1
12
.
12.
Mehfuz
,
R.
, and
Ali
,
M. Y.
,
2007
, “
Surface Roughness Analysis of Beryllium-Copper Alloy in Micro End Milling
,”
Proceedings of 7th International Conference on Mechanical Engineering December
,
Dhaka, Bangladesh
,
ICME07-AM-07
.
13.
Sudhakar K
,
V.
,
Cisneros
,
J. C.
,
Cervantes
,
H.
, and
Pineda
,
C. G.
,
2006
, “
Machining Characteristics and Fracture Morphologies in a Copper-Beryllium (Cu-2Be) Alloy
,”
J. Mater. Eng. Perform.
,
15
(
1
), pp.
117
121
. 10.1361/105994906X83510
14.
Huo
,
D.
,
Liang
,
Y.
, and
Cheng
,
K.
,
2007
, “
An Investigation of Nanoindentation Tests on the Single Crystal Copper Thin Film via an Atomic Force Microscope and Molecular Dynamics Simulation
,”
Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
,
221
(
2
), pp.
259
266
. 10.1243/0954406JMES448
15.
Sharma
,
A.
,
Datta
,
D.
, and
Balasubramaniam
,
R.
,
2018
, “
An Investigation of Tool and Hard Particle Interaction in Nanoscale Cutting of Copper Beryllium
,”
Comput. Mater. Sci.
,
145
, pp.
208
223
. 10.1016/j.commatsci.2018.01.011
16.
Foiles
,
S. M.
,
Baskes
,
M. I.
, and
Daw
,
M. S.
,
1986
, “
Embedded-Atom-Method Functions for the FCC Metals Cu, Ag, Au, Ni, Pd, Pt, and Their Alloys
,”
Phys. Rev. B
,
33
(
12
), p.
7983
7991
. 10.1103/PhysRevB.33.7983
17.
Björkas
,
C.
,
Juslin
,
N.
,
Timko
,
H.
,
Vörtler
,
K.
,
Nordlund
,
K.
,
Henriksson
,
K.
, and
Erhart
P
,
2009
, “
Interatomic Potentials for the Be–C–H System
,”
J. Phys. Condens. Matter
,
21
(
44
), p.
445002
. 10.1088/0953-8984/21/44/445002
18.
Pei
,
Q. X.
,
Lu
,
C.
, and
Lee
,
H. P.
,
2007
, “
Large Scale Molecular Dynamics Study of Nanometric Machining of Copper
,”
Comput. Mater. Sci.
,
41
(
2
), pp.
177
185
. 10.1016/j.commatsci.2007.04.008
19.
Plimpton
,
S.
,
1995
, “
Fast Parallel Algorithms for Short-Range Molecular Dynamics
,”
J. Comput. Phys.
,
117
(
1
), pp.
1
19
. 10.1006/jcph.1995.1039
20.
Stukowski
,
A.
,
2009
, “
Visualization and Analysis of Atomistic Simulation Data With OVITO–The Open Visualization Tool
,”
Modell. Simul. Mater. Sci. Eng.
,
18
(
1
), p.
015012
. 10.1088/0965-0393/18/1/015012
21.
Lee
,
W. B.
, and
Cheung
,
B. C. F.
,
2003
,
Surface Generation in Ultra-Precision Diamond Turning: Modelling and Practices
, Vol. 12,
John Wiley & Sons
,
Hoboken, NJ
.
22.
Hodkiewicz
,
J.
,
2010
, “
Characterizing Carbon Materials with Raman Spectroscopy
,”
Thermo. Sci. Appl. Note
, p.
51946
. https://assets.thermofisher.com/TFS-Assets/CAD/Application-Notes/D19504
23.
Evans
,
C.
, and
Bryan
,
J. B.
,
1991
, “
Cryogenic Diamond Turning of Stainless Steel
,”
CIRP Ann.
,
40
(
1
), pp.
571
575
. 10.1016/S0007-8506(07)62056-3
24.
Shimada
,
S.
,
Inamura
,
T.
,
Higuchi
,
M.
,
Tanaka
,
H.
, and
Ikawa
,
N.
,
2000
, “
Suppression of Tool Wear in Diamond Turning of Copper Under Reduced Oxygen Atmosphere
,”
CIRP Ann.
,
49
(
1
), pp.
21
24
. 10.1016/S0007-8506(07)62888-1
25.
To
,
S.
, and
Lee
,
W. B.
,
2001
, “
Deformation Behaviour of Aluminium Single Crystals in Ultraprecision Diamond Turning
,”
J. Mater. Process. Technol.
,
113
(
1–3
), pp.
296
300
. 10.1016/S0924-0136(01)00667-7
26.
Yan
,
J.
,
Asami
,
T.
,
Harada
,
H.
, and
Kuriyagawa
,
T.
,
2009
, “
Fundamental Investigation of Subsurface Damage in Single Crystalline Silicon Caused by Diamond Machining
,”
Precis. Eng.
,
33
(
4
), pp.
378
386
. 10.1016/j.precisioneng.2008.10.008
27.
Puttick
,
K. E.
,
Whitmore
,
L. C.
,
Chao
,
C. L.
, and
Gee
,
A. E.
,
1994
, “
Transmission Electron Microscopy of Nanomachined Silicon Crystals
,”
Philos. Mag. A
,
69
(
1
), pp.
91
103
. 10.1080/01418619408242212
28.
Shibata
,
T.
,
Ono
,
A.
,
Kurihara
,
K.
,
Makino
,
E.
, and
Ikeda
,
M.
,
1994
, “
Cross-section Transmission Electron Microscope Observations of Diamond-Turned Single-Crystal Si Surfaces
,”
Appl. Phys. Lett.
,
65
(
20
), pp.
2553
2555
. 10.1063/1.112633
29.
Lee
,
F. F.
,
1993
,
Mechanical Properties and Deformation Behavior of Materials Having Ultra-Fine Microstructures
,
M.
Nastasi
,
D. M.
Parkin
, and
H.
Gleiter
, eds., Vol.
233
,
Springer
,
Dordrecht
, pp.
495
506
.
30.
Hurh
,
P.
,
2017
, “
The RaDIATE Collaboration-Exploring High Power Target Materials Response to Radiation Damage-Goals, Status, and Future Plans
,”
Proceedings of 8th International Particle Accelerator Conference (IPAC’17)
,
Copenhagen, Denmark
,
June 18–23
, pp.
522
523
.
31.
Sharma
,
A.
,
2019
, “
Numerical and Experimental Investigations of Tool-Workpiece Interaction in Diamond Turning of Copper Beryllium
,”
Ph.D. thesis
,
Homi Bhabha National Institute
,
Mumbai
.
You do not currently have access to this content.