Abstract

Effect of the in situ post weld heat treatment (PWHT) was investigated on the flash profile, austenite/ferrite phase balance, and mechanical properties of the upset resistance dissimilar weld between Fe-Cr-Ni and Fe-Cr stainless steels rods. In order to explore the effect of the heat treatment on the joint strength, two as-welded samples with low strength (116 MPa) and high strength (372 MPa) were used. The results showed that in situ PWHT was beneficial for both welded samples, though in different ways. For the weld with low strength, PWHT improved the joint strength (∼130% increase in the optimum condition compared with the as-welded sample) due to the increase in the size of the flash and the related bonded area at the joint interface. However, ferrite percent in the weld zone increased from ∼50% up to ∼70%. For the sample with the high strength, ferrite/austenite phase balance was restored at an optimum condition of PWHT. However, the joint strength decreased slightly (less than 5%) due to the grain growth in the Fe-Cr rod, i.e., the fracture location. Fracture analysis was used for justification of the variations in the joint strength. For both Fe-Cr-Ni side and Fe-Cr side of the welds, in situ PWHT generally reduced the hardness. This observation is discussed in light of the simultaneous effects of the grain growth and formation of little martensite.

References

References
1.
Ozlati
,
A.
, and
Movahedi
,
M.
,
2018
, “
Effect of Welding Heat-Input on Tensile Strength and Fracture Location in Upset Resistance Weld of Martensitic Stainless Steel to Duplex Stainless Steel Rods
,”
J. Manuf. Processes
,
35
(
1
), pp.
517
525
. 10.1016/j.jmapro.2018.08.039
2.
Kerstens
,
N. F. H.
,
2009
,
Investigation and Control of Factors Influencing Resistance Upset Butt Welding
,
Delft University of Technology
,
Delft, Netherlands
.
3.
Lippold
,
J. C.
, and
Kotecki
,
D. J.
,
2005
,
Welding Metallurgy and Weldability of Stainless Steels
,
John Wiley
,
New York
.
4.
Alizadeh-Sh
,
M.
,
Marashi
,
S. P. H.
, and
Pouranvari
,
M.
,
2014
, “
Microstructure–Properties Relationships in Martensitic Stainless Steel Resistance Spot Welds
,”
Sci. Technol. Weld. Joining
,
19
(
7
), pp.
595
602
. 10.1179/1362171814Y.0000000230
5.
Pouranvari
,
M.
,
2017
, “
Fracture Toughness of Martensitic Stainless Steel Resistance Spot Welds
,”
Mater. Sci. Eng., A
,
680
(
5
), pp.
97
107
. 10.1016/j.msea.2016.10.088
6.
Shirmohammadi
,
D.
,
Movahedi
,
M.
, and
Pouranvari
,
M.
,
2017
, “
Resistance Spot Welding of Martensitic Stainless Steel: Effect of Initial Base Metal Microstructure on Weld Microstructure and Mechanical Performance
,”
Mater. Sci. Eng., A
,
703
(
4
), pp.
154
161
. 10.1016/j.msea.2017.07.067
7.
Saqib
,
S. M.
, and
Urbanic
,
R. J.
,
2017
, “
Investigation of the Transient Characteristics for Laser Cladding Beads Using 420 Stainless Steel Powder
,”
ASME J. Manuf. Sci. Eng.
,
139
(
8
), p.
081009
. 10.1115/1.4036488
8.
Haghdadi
,
N.
,
Cizek
,
P.
,
Hodgson
,
P. D.
, and
Beladi
,
H.
,
2019
, “
Microstructure Dependence of Impact Toughness in Duplex Stainless Steels
,”
Mater. Sci. Eng., A
,
745
(
4
), pp.
369
378
. 10.1016/j.msea.2018.12.117
9.
Salazar
,
M.
,
García
,
R.
,
López
,
V. H.
,
Galván-Martínez
,
R.
, and
Contreras
,
A.
,
2017
, “
Improvement of UNS S32205 Duplex Welds by GMAW and Controlled Magnetic Field for Offshore Pipelines and Flowlines Applications
,”
ASME J. Offshore Mech. Arct. Eng.
,
139
(
6
), p.
061301
. 10.1115/1.4036911
10.
Pramanik
,
A.
,
Littlefair
,
G.
, and
Basak
,
A. K.
,
2015
, “
Weldability of Duplex Stainless Steel
,”
Mater. Manuf. Processes
,
30
(
9
), pp.
1053
1068
. 10.1080/10426914.2015.1019126
11.
Bettahar
,
K.
,
Bouabdallah
,
M.
,
Badji
,
R.
,
Gaceb
,
M.
,
Kahloun
,
C.
, and
Bacroix
,
B.
,
2015
, “
Microstructure and Mechanical Behavior in Dissimilar 13Cr/2205 Stainless Steel Welded Pipes
,”
Mater. Des.
,
85
(
15
), pp.
221
229
. 10.1016/j.matdes.2015.07.017
12.
Çam
,
G.
,
Yeni
,
Ç
,
Erim
,
S.
,
Ventzke
,
V.
, and
Koçak
,
M.
,
1998
, “
Investigation Into Properties of Laser Welded Similar and Dissimilar Steel Joints
,”
Sci. Technol. Weld. Joining
,
3
(
4
), pp.
177
189
. 10.1179/stw.1998.3.4.177
13.
Cam
,
G.
,
Erim
,
S.
,
Yeni
,
C.
, and
Koçak
,
M.
,
1999
, “
Determination of Mechanical and Fracture Properties of Laser Beam Welded Steel Joints
,”
Weld. J.
,
78
(
6
), pp.
193
201
.
14.
Dos Santos
,
J.
,
Çam
,
G.
,
Torster
,
F.
,
Insfran
,
A.
,
Riekehr
,
S.
,
Ventzke
,
V.
, and
Koçak
,
M.
,
2000
, “
Properties of Power Beam Welded Steels, Al-and Ti-Alloys: Significance of Strength Mismatch
,”
Weld. World
,
44
(
6
), pp.
42
64
.
15.
Çam
,
G.
,
2011
, “
Friction Stir Welded Structural Materials: Beyond Al-Alloys
,”
Int. Mater. Rev.
,
56
(
1
), pp.
1
48
. 10.1179/095066010X12777205875750
16.
Çam
,
G.
,
İpekoğlu
,
G.
,
Küçükömeroğlu
,
T.
, and
Aktarer
,
S. M.
,
2017
, “
Applicability of Friction Stir Welding to Steels
,”
J. Achiev. Mater. Manuf. Eng.
,
2
(
80
), pp.
65
85
. 10.5604/01.3001.0010.2027
17.
Arabi
,
S. H.
,
Pouranvari
,
M.
, and
Movahedi
,
M.
,
2019
, “
Pathways to Improve the Austenite–Ferrite Phase Balance During Resistance Spot Welding of Duplex Stainless Steels
,”
Sci. Technol. Weld. Joining
,
24
(
1
), pp.
8
15
. 10.1080/13621718.2018.1468949
18.
Arabi
,
S. H.
,
Pouranvari
,
M.
, and
Movahedi
,
M.
,
2017
, “
Welding Metallurgy of Duplex Stainless Steel During Resistance Spot Welding
,”
Weld J.
,
96
(
1
), pp.
307s
318s
.
19.
Ozlati
,
A.
,
Movahedi
,
M.
, and
Mohammadkamal
,
H.
,
2016
, “
Upset Resistance Welding of Carbon Steel to Austenitic Stainless Steel Narrow Rods
,”
J. Mater. Eng. Perform.
,
25
(
11
), pp.
4902
4910
. 10.1007/s11665-016-2321-z
20.
Sharifitabar
,
M.
, and
Halvaee
,
A.
,
2010
, “
Resistance Upset Butt Welding of Austenitic to Martensitic Stainless Steels
,”
Mater. Des.
,
31
(
6
), pp.
3044
3050
. 10.1016/j.matdes.2010.01.026
21.
Sharifitabar
,
M.
,
Halvaee
,
A.
, and
Khorshahian
,
S.
,
2011
, “
Microstructure and Mechanical Properties of Resistance Upset Butt Welded 304 Austenitic Stainless Steel Joints
,”
Mater. Des.
,
32
(
7
), pp.
3854
3864
. 10.1016/j.matdes.2011.03.007
22.
Pouranvari
,
M.
,
Alizadeh-Sh
,
M.
, and
Marashi
,
S. P. H.
,
2015
, “
Welding Metallurgy of Stainless Steels During Resistance Spot Welding Part I: Fusion Zone
,”
Sci. Technol. Weld. Joining
,
20
(
6
), pp.
502
511
. 10.1179/1362171815Y.0000000015
23.
Das
,
C. R.
,
Albert
,
S. K.
,
Bhaduri
,
A. K.
,
Srinivasan
,
G.
, and
Ramasubbu
,
V.
,
2008
, “
Effect of Minor Change in Composition on Toughness of Weldmetal for Repair of Turbine Blades Made of Martensitic Stainless Steel
,”
Sci. Technol. Weld. Joining
,
13
(
2
), pp.
159
166
. 10.1179/174329308X271814
24.
Neissi
,
R.
,
Shamanian
,
M.
, and
Hajihashemi
,
M.
,
2016
, “
The Effect of Constant and Pulsed Current Gas Tungsten Arc Welding on Joint Properties of 2205 Duplex Stainless Steel to 316L Austenitic Stainless Steel
,”
J. Mater. Eng. Perform.
,
25
(
5
), pp.
2017
2028
. 10.1007/s11665-016-2033-4
25.
Reddy
,
G. M.
,
Rao
,
K. S.
, and
Sekhar
,
T.
,
2008
, “
Microstructure and Pitting Corrosion of Similar and Dissimilar Stainless Steel Welds
,”
Sci. Technol. Weld. Joining
,
13
(
4
), pp.
363
377
. 10.1179/174329308X299968
26.
Hertzberg
,
R. W.
, and
Hauser
,
F. E.
,
2010
,
Deformation and Fracture Mechanics of Engineering Materials
,
John Wiley & Sons, Inc
,
New York
.
27.
Wang
,
H.
,
Zhang
,
Y.
, and
Chen
,
K.
,
2016
, “
Modeling of Temperature Distribution in Laser Welding of Lapped Martensitic Steel M1500 and Softening Estimation
,”
ASME J. Manuf. Sci. Eng.
,
138
(
11
), p.
111006
. 10.1115/1.4033391
You do not currently have access to this content.