Abstract

In machining processes, chatter suppression is very important for achieving a high material removal rate, good dimensional accuracy, and surface finish. With the merits of effectiveness and easy implementation, spindle speed variation (SSV) is regarded as a promising approach for chatter suppression. However, there is little research on the selection of SSV parameters for adaptive chatter suppression. Although the effectiveness of adaptively adjusting SSV amplitudes has been recently examined, the simultaneous adjustment of the SSV amplitude and frequency is expected to exhibit stronger adaptability since it achieves greater flexibility. In this paper, an active chatter suppression strategy is presented by simultaneously adjusting the amplitude and frequency of spindle speed variation. The effect of SSV parameters on stability improvement in turning processes including the tool wear is first investigated to demonstrate the necessity of simultaneously adjusting the amplitude and frequency for chatter suppression. Then, the proposed chatter suppression system is introduced, where two SSV parameters are simultaneously adjusted with optimal fractional-order proportional integral differential (FOPID) controllers to keep the chatter indicator close to a target value. Moreover, the FOPID controller is optimally tuned with the JADE algorithm. The effectiveness of the proposed method is verified by comparing simulated results of different SSV parameters adjusting strategies. Finally, machining tests are conducted to validate that the proposed chatter suppression method outperforms the existing SSV method in flexibility and effectiveness.

References

1.
Munoa
,
J.
,
Beudaert
,
X.
,
Dombovari
,
Z.
,
Altintas
,
Y.
,
Budak
,
E.
,
Brecher
,
C.
, and
Stepan
,
G.
,
2016
, “
Chatter Suppression Techniques in Metal Cutting
,”
CIRP Ann. Manuf. Technol.
,
65
(
2
), pp.
785
808
. 10.1016/j.cirp.2016.06.004
2.
Siddhpura
,
M.
, and
Paurobally
,
R.
,
2012
, “
A Review of Chatter Vibration Research in Turning
,”
Int. J. Mach. Tools Manuf.
,
61
, pp.
27
47
. 10.1016/j.ijmachtools.2012.05.007
3.
Wang
,
C. X.
,
Zhang
,
X. W.
,
Liu
,
Y. L.
,
Cao
,
H. R.
, and
Chen
,
X. F.
,
2018
, “
Stiffness Variation Method for Milling Chatter Suppression via Piezoelectric Stack Actuators
,”
J. Mach. Tools Manuf.
,
124
, pp.
53
66
. 10.1016/j.ijmachtools.2017.10.002
4.
Zhang
,
X. W.
,
Yin
,
Z. Y.
,
Guo
,
J. W.
,
Liu
,
J. X.
,
Guo
,
R. X.
,
Cao
,
H. R.
, and
Chen
,
X. F.
,
2019
, “
Discrete Time-Delay Optimal Control Method for Experimental Active Chatter Suppression and Its Closed-Loop Stability Analysis
,”
ASME J. Manuf. Sci. Eng.
,
141
(
5
), p.
051003
. 10.1115/1.4043020
5.
Hamann
,
D.
,
Walz
,
N. P.
,
Fischer
,
A.
,
Hanss
,
M.
, and
Eberhard
,
P.
,
2018
, “
Fuzzy Arithmetical Stability Analysis of Uncertain Machining Systems
,”
Mech. Syst. Signal Process.
,
98
, pp.
534
547
. 10.1016/j.ymssp.2017.05.012
6.
Liu
,
Y.
,
Li
,
T.
,
Liu
,
K.
, and
Zhang
,
Y. M.
,
2016
, “
Chatter Reliability Prediction of Turning Process System With Uncertainties
,”
Mech. Syst. Signal Process.
,
66
, pp.
232
247
. 10.1016/j.ymssp.2015.06.030
7.
Gagnol
,
V.
,
Bouzgarrou
,
B. C.
,
Ray
,
P.
, and
Barra
,
C.
,
2007
, “
Model-Based Chatter Stability Prediction for High-Speed Spindles
,”
Int. J. Mach. Tools Manuf.
,
47
(
7–8
), pp.
1176
1186
. 10.1016/j.ijmachtools.2006.09.002
8.
Yang
,
Y.
,
Zhang
,
W. H.
,
Ma
,
Y. C.
, and
Wan
,
W.
,
2016
, “
Chatter Prediction for the Peripheral Milling of Thin-Walled Workpieces With Curved Surfaces
,”
Int. J. Mach. Tools Manuf.
,
109
, pp.
36
48
. 10.1016/j.ijmachtools.2016.07.002
9.
Albertelli
,
P.
,
Musletti
,
S.
,
Leonesio
,
M.
,
Bianchi
,
G.
, and
Monno
,
M.
,
2012
, “
Spindle Speed Variation in Turning: Technological Effectiveness and Applicability to Real Industrial Cases
,”
Int. J. Adv. Manuf. Technol.
,
62
(
1–4
), pp.
59
67
. 10.1007/s00170-011-3790-8
10.
Jayaram
,
S.
,
Kapoor
,
S. G.
, and
DeVor
,
R. E.
,
2000
, “
Analytical Stability Analysis of Variable Spindle Speed Machining
,”
ASME J. Manuf. Sci. Eng.
,
122
(
3
), pp.
391
397
. 10.1115/1.1285890
11.
Al-Regib
,
E.
,
Ni
,
J.
, and
Lee
,
S. H.
,
2003
, “
Programming Spindle Speed Variation for Machine Tool Chatter Suppression
,”
Int. J. Mach. Tools Manuf.
,
43
(
12
), pp.
1229
1240
. 10.1016/S0890-6955(03)00126-3
12.
Soliman
,
E.
, and
Ismail
,
F.
,
1997
, “
Chatter Suppression by Adaptive Speed Modulation
,”
Int. J. Mach. Tools Manuf.
,
37
(
3
), pp.
355
369
. 10.1016/0890-6955(95)00084-4
13.
Ding
,
L. Y.
,
Sun
,
Y. X.
, and
Xiong
,
Z. H.
,
2018
, “
Online Chatter Suppression in Turning by Adaptive Amplitude Modulation of Spindle Speed Variation
,”
ASME J. Manuf. Sci. Eng.
,
140
(
12
), p.
121003
. 10.1115/1.4041248
14.
Zhang
,
H.
, and
Ni
,
J.
,
2010
, “
Internal Energy Based Analysis on Mechanism of Spindle Speed Variation for Regenerative Chatter Control
,”
J. Vib. Control
,
16
(
2
), pp.
281
301
. 10.1177/1077546309103562
15.
Yu
,
S. D.
, and
Shah
,
V.
,
2008
, “
Theoretical and Experimental Studies of Chatter in Turning for Uniform and Stepped Workpieces
,”
ASME J. Vib. Acoust.
,
130
(
6
), p.
061005
. 10.1115/1.2948384
16.
Moradi
,
H.
,
Movahhedy
,
M. R.
, and
Vossoughi
,
G. R.
,
2009
, “
Robust Control Strategy for Suppression of Regenerative Chatter in Turning
,”
J. Manuf. Process.
,
11
(
2
), pp.
55
65
. 10.1016/j.jmapro.2009.06.002
17.
Tuysuz
,
O.
, and
Altintas
,
Y.
,
2018
, “
Analytical Modeling of Process Damping in Machining
,”
ASME J. Manuf. Sci. Eng.
,
141
(
6
), p.
061006
. 10.1115/1.4043310
18.
Yang
,
F. L.
,
Zhang
,
B.
, and
Yu
,
J. Y.
,
2003
, “
Chatter Suppression With Multiple Time-Varying Parameters in Turning
,”
J. Mater. Process Tech.
,
141
(
3
), pp.
431
438
. 10.1016/S0924-0136(03)00427-8
19.
Yilmaz
,
A.
,
Emad
,
A. L.
, and
Ni
,
J.
,
2002
, “
Machine Tool Chatter Suppression by Multi-Level Random Spindle Speed Variation
,”
ASME J. Manuf. Sci. Eng.
,
124
(
2
), pp.
208
216
. 10.1115/1.1378794
20.
Barrenetxea
,
D.
,
Marquinez
,
J. I.
,
Bediaga
,
I.
, and
Uriarte
,
L.
,
2009
, “
Continuous Workpiece Speed Variation (CWSV): Model Based Practical Application to Avoid Chatter in Grinding
,”
CIRP Ann. Manuf. Technol.
,
58
(
1
), pp.
319
322
. 10.1016/j.cirp.2009.03.047
21.
Seguy
,
S.
,
Insperger
,
T.
,
Arnaud
,
L.
,
Dessein
,
G.
, and
Peigné
,
G.
,
2010
, “
On the Stability of High-Speed Milling With Spindle Speed Variation
,”
Int. J. Adv. Manuf. Technol.
,
48
(
9–12
), pp.
883
895
. 10.1007/s00170-009-2336-9
22.
Insperger
,
T.
, and
Stepan
,
G.
,
2004
, “
Stability Analysis of Turning With Periodic Spindle Speed Modulation via Semidiscretization
,”
J. Vib. Control
,
10
(
12
), pp.
1835
1855
. 10.1177/1077546304044891
23.
Jemielniak
,
K.
, and
Widota
,
A.
,
1984
, “
Suppression of Self-Excited Vibration by the Spindle Speed Variation Method
,”
Int. J. Mach. Tool Des. Res.
,
24
(
3
), pp.
207
214
. 10.1016/0020-7357(84)90005-2
24.
Wu
,
D.
, and
Chen
,
K.
,
2010
, “
Chatter Suppression in Fast Tool Servo-Assisted Turning by Spindle Speed Variation
,”
Int. J. Mach. Tools Manuf.
,
50
(
12
), pp.
1038
1047
. 10.1016/j.ijmachtools.2010.09.001
25.
Sun
,
Y. X.
, and
Xiong
,
Z. H.
,
2017
, “
Modeling, Analysis, and Removal of Chatter Marks in Flexible Turning
,”
Int. J. Adv. Manuf. Technol.
,
93
(
9–12
), pp.
4187
4196
. 10.1007/s00170-017-0856-2
26.
Hajikolaei
,
K. H.
,
Moradi
,
H.
,
Vossoughi
,
G.
, and
Movahhedy
,
M. R.
,
2010
, “
Spindle Speed Variation and Adaptive Force Regulation to Suppress Regenerative Chatter in the Turning Process
,”
J. Manuf. Process.
,
12
(
2
), pp.
106
115
. 10.1016/j.jmapro.2010.08.002
27.
Albertelli
,
P.
,
Braghieri
,
L.
,
Torta
,
M.
, and
Monno
,
M.
,
2019
, “
Development of a Generalized Chatter Detection Methodology for Variable Speed Machining
,”
Mech. Syst. Signal Process.
,
123
, pp.
26
42
. 10.1016/j.ymssp.2019.01.002
28.
Sun
,
Y. X.
, and
Xiong
,
Z. H.
,
2016
, “
An Optimal Weighted Wavelet Packet Entropy Method With Application to Real-Time Chatter Detection
,”
IEEE-ASME Trans. Mechatronics
,
21
(
4
), pp.
2004
2014
. 10.1109/TMECH.2016.2547481
29.
Zhang
,
F. X.
,
Yang
,
C. H.
,
Zhou
,
X. J.
, and
Zhu
,
H. Q.
,
2018
, “
Fractional Order Fuzzy PID Optimal Control in Copper Removal Process of Zinc Hydrometallurgy
,”
Hydrometallurgy
,
178
, pp.
60
76
. 10.1016/j.hydromet.2018.03.021
30.
Angel
,
L.
, and
Viola
,
J.
,
2018
, “
Fractional Order PID for Tracking Control of a Parallel Robotic Manipulator Type Delta
,”
ISA Trans.
,
79
, pp.
172
188
. 10.1016/j.isatra.2018.04.010
31.
Zamani
,
M.
,
Karimi-Ghartemani
,
M.
,
Sadati
,
N.
, and
Parniani
,
M.
,
2009
, “
Design of a Fractional Order PID Controller for an AVR Using Particle Swarm Optimization
,”
Control Eng. Pract.
,
17
(
12
), pp.
1380
1387
. 10.1016/j.conengprac.2009.07.005
32.
Monje
,
C. A.
,
Vinagre
,
B. M.
,
Feliu
,
V.
, and
Chen
,
Y.
,
2008
, “
Tuning and Auto-Tuning of Fractional Order Controllers for Industry Applications
,”
Control Eng. Pract.
,
16
(
7
), pp.
798
812
. 10.1016/j.conengprac.2007.08.006
33.
Zamani
,
A.
,
Barakati
,
S. M.
, and
Yousofi-Darmian
,
S.
,
2016
, “
Design of a Fractional Order PID Controller Using GBMO Algorithm for Load–Frequency Control With Governor Saturation Consideration
,”
ISA Trans.
,
64
, pp.
56
66
. 10.1016/j.isatra.2016.04.021
34.
Islam
,
S. M.
,
Das
,
S.
,
Ghosh
,
S.
,
Roy
,
S.
, and
Suganthan
,
P. N.
,
2011
, “
An Adaptive Differential Evolution Algorithm With Novel Mutation and Crossover Strategies for Global Numerical Optimization
,”
IEEE Trans. Syst. Man Cybern. B Cybern.
,
42
(
2
), pp.
482
500
. 10.1109/TSMCB.2011.2167966
35.
Zhang
,
J.
, and
Sanderson
,
A. C.
,
2009
, “
JADE: Adaptive Differential Evolution With Optional External Archive
,”
IEEE Trans. Evolut. Comput.
,
13
(
5
), pp.
945
958
. 10.1109/TEVC.2009.2014613
36.
Zhang
,
F.
,
Yang
,
C.
,
Zhou
,
X.
, and
Gui
,
W.
,
2018
, “
Fractional-Order PID Controller Tuning Using Continuous State Transition Algorithm
,”
Neural Comput. Appl.
,
29
(
10
), pp.
795
804
. 10.1007/s00521-016-2605-0
37.
Zhang
,
H. T.
,
Wu
,
Y.
,
He
,
D. F.
, and
Zhao
,
H.
,
2015
, “
Model Predictive Control to Mitigate Chatters in Milling Processes With Input Constraints
,”
Int. J. Mach. Tools Manuf.
,
91
, pp.
54
61
. 10.1016/j.ijmachtools.2015.01.002
38.
Ding
,
L. Y.
,
Sun
,
Y. X.
, and
Xiong
,
Z. H.
,
2019
, “
Dual-Mode Type Algorithm for Chatter Detection in Turning Considering Beat Vibration
,”
IEEE 2019 International Conference on Advanced Intelligent Mechatronics
,
Hong Kong, China
,
July 8–12
, pp.
654
659
.
You do not currently have access to this content.