Abstract

Chip formation in conventional cutting occurs by deformation that is only partially bounded by the cutting tool. The unconstrained free surface makes it difficult to determine and to control the deformation of chip formation. The constrained cutting employs a constraining tool in the cutting process to confine the otherwise free surface and enable direct control of the chip formation deformation. The presented work is a study of the deformation mechanics of plane strain constrained cutting using high-speed imaging and digital image correlation (DIC) methods. For different constrained levels (including unconstrained free cutting), the material flow of chip formation is directly observed; the strain rate and strain in the chip as well as the subsurface region are quantified; cutting forces are measured; and surface finish is examined. The study shows that chip formation in constrained cutting can occur in two different deformation modes, i.e., simple shear and complex extrusion, depending on the constrained level. Constrained cutting in the simple shear regime can reduce strain, reduce cutting force and energy, and improve surface finish compared to free cutting; therefore, it is more efficient for material removal than free cutting. Constrained cutting in the extrusion regime imposes a high resistance to the chip flow and causes a significant amount of subsurface deformation, and therefore is not suitable for material removal. Furthermore, the mechanics of chip formation in both free cutting and constrained cutting, especially the roles played by the free surface and the constraining tool, are discussed.

References

1.
Shaw
,
M. C.
,
1984
,
Metal Cutting Principles
,
Clarendon Press
,
Oxford, UK
.
2.
Cooke
,
W. B. H.
, and
Rice
,
W. B.
,
1973
, “
Inhomogeneous Shearing During Continuous Chip Formation
,”
J. Eng. Ind.
,
95
(
3
), pp.
844
848
. 10.1115/1.3438235
3.
Komanduri
,
R.
, and
Von Turkovich
,
B. F.
,
1981
, “
New Observations on the Mechanism of Chip Formation When Machining Titanium Alloys
,”
Wear
,
69
(
2
), pp.
179
188
. 10.1016/0043-1648(81)90242-8
4.
Nakayama
,
K.
,
1974
, “
The Formation of Saw-Toothed Chip in Metal Cutting
,”
Proceedings of the International Conference on Production Engineering
,
Tokyo
,
Aug. 26–29
, pp.
572
577
.
5.
Yeung
,
H.
,
Viswanathan
,
K.
,
Compton
,
W. D.
, and
Chandrasekar
,
S.
,
2015
, “
Sinuous Flow in Metals
,”
Proc. Natl. Acad. Sci. USA
,
112
(
32
), pp.
9828
9832
. 10.1073/pnas.1509165112
6.
Merchant
,
M. E.
,
1945
, “
Mechanics of the Metal Cutting Process. I. Orthogonal Cutting and a Type 2 Chip
,”
J. Appl. Phys.
,
16
(
5
), pp.
267
275
. 10.1063/1.1707586
7.
Hill
,
R.
,
1954
, “
The Mechanics of Machining: A New Approach
,”
J. Mech. Phys. Solids
,
3
(
1
), pp.
47
53
. 10.1016/0022-5096(54)90038-1
8.
Hill
,
R.
,
1950
,
The Mathematical Theory of Plasticity
,
Clarendon Press
,
Oxford, UK
.
9.
Akiyama
,
T.
,
Kishinami
,
T.
,
Saito
,
K.
, and
Hoshi
,
K.
,
1975
, “
A Study of the Orthogonal Cutting Mechanism by Controlled Shear Angle Experiments
,”
Mem. Fac. Eng. Hokkaido Univ. = 北海道大学工学部紀要
,
14
(
1
), pp.
13
20
.
10.
Bäker
,
M.
,
2005
, “
Does Chip Formation Minimize the Energy?
,”
Comput. Mater. Sci.
,
33
(
4
), pp.
407
418
. 10.1016/j.commatsci.2004.08.007
11.
Molinari
,
A.
, and
Moufki
,
A.
,
2008
, “
The Merchant’s Model of Orthogonal Cutting Revisited: A New Insight Into the Modeling of Chip Formation
,”
Int. J. Mech. Sci.
,
50
(
2
), pp.
124
131
. 10.1016/j.ijmecsci.2007.07.015
12.
Astakhov
,
V. P.
,
2005
, “
On the Inadequacy of the Single-Shear Plane Model of Chip Formation
,”
Int. J. Mech. Sci.
,
47
(
11
), pp.
1649
1672
. 10.1016/j.ijmecsci.2005.07.002
13.
Fang
,
N.
,
2003
, “
Slip-Line Modeling of Machining with a Rounded-Edge Tool—Part I: New Model and Theory
,”
J. Mech. Phys. Solids
,
51
(
4
), pp.
715
742
. 10.1016/S0022-5096(02)00060-1
14.
De Chiffre
,
L.
,
1976
, “
Extrusion-Cutting
,”
Int. J. Mach. Tool Des. Res.
,
16
(
2
), pp.
137
144
. 10.1016/0020-7357(76)90032-9
15.
De Chiffre
,
L.
,
1983
, “
Extrusion Cutting of Brass Strips
,”
Int. J. Mach. Tool Des. Res.
,
23
(
2–3
), pp.
141
151
. 10.1016/0020-7357(83)90013-6
16.
Moscoso
,
W.
,
Shankar
,
M. R.
,
Mann
,
J. B.
,
Compton
,
W. D.
, and
Chandrasekar
,
S.
,
2007
, “
Bulk Nanostructured Materials by Large Strain Extrusion Machining
,”
J. Mater. Res.
,
22
(
1
), pp.
201
205
. 10.1557/jmr.2007.0021
17.
Efe
,
M.
,
Moscoso
,
W.
,
Trumble
,
K. P.
,
Dale Compton
,
W.
, and
Chandrasekar
,
S.
,
2012
, “
Mechanics of Large Strain Extrusion Machining and Application to Deformation Processing of Magnesium Alloys
,”
Acta Mater.
,
60
(
5
), pp.
2031
2042
. 10.1016/j.actamat.2012.01.018
18.
Kustas
,
A. B.
,
Johnson
,
D. R.
,
Trumble
,
K. P.
, and
Chandrasekar
,
S.
,
2018
, “
Enhancing Workability in Sheet Production of High Silicon Content Electrical Steel Through Large Shear Deformation
,”
J. Mater. Process. Technol.
,
257
, pp.
155
162
. 10.1016/j.jmatprotec.2018.02.027
19.
Guo
,
Y.
,
Compton
,
W. D.
, and
Chandrasekar
,
S.
,
2015
, “
In Situ Analysis of Flow Dynamics and Deformation Fields in Cutting and Sliding of Metals
,”
Proc. R. Soc. A
,
471
(
2178
), p.
20150194
. 10.1098/rspa.2015.0194
20.
Fang
,
T. H.
,
Li
,
W. L.
,
Tao
,
N. R.
, and
Lu
,
K.
,
2011
, “
Revealing Extraordinary Intrinsic Tensile Plasticity in Gradient Nano-Grained Copper
,”
Science
,
331
(
6024
), pp.
1587
1590
. 10.1126/science.1200177
21.
Wu
,
X.
,
Jiang
,
P.
,
Chen
,
L.
,
Yuan
,
F.
, and
Zhu
,
Y. T.
,
2014
, “
Extraordinary Strain Hardening by Gradient Structure
,”
Proc. Natl. Acad. Sci. USA
,
111
(
20
), pp.
7197
7201
. 10.1073/pnas.1324069111
22.
Kudo
,
H.
,
1965
, “
Some New Slip-Line Solutions for Two-Dimensional Steady-State Machining
,”
Int. J. Mech. Sci.
,
7
(
1
), pp.
43
55
. 10.1016/0020-7403(65)90084-6
23.
Dewhurst
,
P.
,
1978
, “
On the Non-Uniqueness of the Machining Process
,”
Proc. R. Soc. A
,
360
(
1703
), pp.
587
610
. 10.1098/rspa.1978.0087
24.
Cai
,
S. L.
, and
Dai
,
L. H.
,
2014
, “
Suppression of Repeated Adiabatic Shear Banding by Dynamic Large Strain Extrusion Machining
,”
J. Mech. Phys. Solids
,
73
, pp.
84
102
. 10.1016/j.jmps.2014.09.004
25.
Sagapuram
,
D.
,
Viswanathan
,
K.
,
Mahato
,
A.
,
Sundaram
,
N. K.
,
M’Saoubi
,
R.
,
Trumble
,
K. P.
, and
Chandrasekar
,
S.
,
2016
, “
Geometric Flow Control of Shear Bands by Suppression of Viscous Sliding
,”
Proc. R. Soc. A
,
472
(
2192
), p.
20160167
. 10.1098/rspa.2016.0167
You do not currently have access to this content.