Abstract

The grinding temperature is of great importance for the quality and integrity of machined cemented carbide tool. Tool edge surfaces may be damaged by softening or being stressed, hardened, burned, or cracked. Former research on grinding temperature prediction often made assumptions to simplify heat convection due to the grinding fluid. However, these simplifying assumptions can sometimes undermine the mathematical relationships between grinding conditions and surface temperature, particularly in low-temperature grinding where fluid convection is most important. This paper is an attempt to provide an improved comprehensive thermal model for the prediction of contact temperatures and for monitoring and control of thermal damage. Based on previous thermal model research, this paper tackles a key element of the thermal model for temperature prediction. It proposes a convective heat transfer model based on the classic theory of turbulent flow passing a plate. Theoretical predictions from the thermal model of turbulent flow developed in this paper are compared with experimental values. Predictions are further compared with values from a previously published laminar flow model. And it is shown that the new model leads to a significant reduction in predicted temperatures. The results suggest that the thermal model for the turbulent flow provides a reasonable estimate of predicted temperature values within the region of the fluid boiling temperature. The estimates appear to be an improvement compared with the laminar flow thermal model. The turbulent flow thermal model is considered to improve estimates of background contact temperatures in grinding cemented carbide.

Reference

1.
Bobzin
,
K.
,
2017
, “
High-Performance Coatings for Cutting Tools
,”
CIRP J. Manuf. Sci. Technol.
,
18
, pp.
1
9
. 10.1016/j.cirpj.2016.11.004
2.
Yang
,
J.
,
Roa
,
J. J.
,
Schwind
,
M.
,
Odén
,
M.
,
Johansson-Jõesaar
M. P.
, and
Llanes
,
L.
,
2017
, “
Grinding-Induced Metallurgical Alterations in the Binder Phase of WC-Co Cemented Carbides
,”
Mater. Charact.
,
134
, pp.
302
310
. 10.1016/j.matchar.2017.11.004
3.
Zhang
,
L.
,
Ge
,
P. Q.
,
Zhang
,
J. H.
,
Zhu
,
Z. J.
, and
Luan
,
Z. Y.
,
2007
, “
Experimental and Simulation Studies on Temperature Field of 40Cr Steel Surface Layer in Grind-Hardening
,”
Int. J. Abrasive Technol.
,
1
(
2
), pp.
187
197
. 10.1504/IJAT.2007.015383
4.
Zhang
,
L.
,
Ge
,
P. Q.
,
Meng
,
J. F.
,
Cheng
,
J. H.
, and
Wang
,
M.
,
2004
, “
New Heat Flux Model in Surface Grinding
,”
Mater. Sci. Forum
,
471–472
, pp.
298
301
. 10.4028/www.scientific.net/MSF.471-472.298
5.
Zhang
,
J.
,
Ge
,
P.
,
Jen
,
T.-C.
, and
Zhang
,
L.
,
2009
, “
Experimental and Numerical Studies of AISI1020 Steel in Grind-Hardening
,”
Int. J. Heat Mass Transfer
,
52
(
3–4
), pp.
787
795
. 10.1016/j.ijheatmasstransfer.2008.06.037
6.
Zelwer
,
O.
, and
Malkin
,
S.
,
1980
, “
Grinding of WC-Co Cemented Carbides
,”
J. Eng. Ind.
,
102
(
3
), pp.
209
220
. 10.1115/1.3183856
7.
Abdullah
,
A.
,
Pak
,
A.
,
Farahi
,
M.
, and
Barzegari
,
M.
,
2007
, “
Profile Wear Of Resin-Bonded Nickel-Coated Diamond Wheel and Roughness in Creep Feed Grinding of Cemented Tungsten Carbide
,”
J. Mater. Process. Technol.
,
183
(
2–3
), pp.
165
168
. 10.1016/j.jmatprotec.2006.09.038
8.
Sun
,
H. Q.
,
Irwan
,
R.
,
Huang
,
H.
, and
Stachowiak
,
G. W.
,
2010
, “
Surface Characteristics and Removal Mechanism of Cemented Tungsten Carbides in Nanoscratching
,”
Wear.
,
268
(
11–12
), pp.
1
9
. 10.1016/j.wear.2010.02.014
9.
Yin
,
L.
,
Spowage
,
A. C.
,
Ramesh
,
K.
,
Huang
,
H.
,
Pickering
,
J. P.
, and
Vancoille
,
E. Y. J.
,
2004
, “
Influence of Microstructure on Ultraprecision Grinding of Cemented Carbides
,”
Int. J. Mach. Tools Manuf.
,
44
(
5
), pp.
533
543
. 10.1016/j.ijmachtools.2003.10.022
10.
Denkena
,
B.
,
Schmidt
,
C.
, and
Krüger
,
M.
,
2010
, “
Experimental Investigation and Modeling of Thermal and Mechanical Influences on Shape Deviations in Machining Structural Parts
,”
Int. J. Mach. Tools Manuf.
,
50
(
11
), pp.
1015
1021
. 10.1016/j.ijmachtools.2010.06.006
11.
Rowe
,
W. B.
,
Morgan
,
M. N.
,
Black
,
S. C. E.
, and
Mills
,
B.
,
1996
, “
A Simplified Approach to Thermal Damage in Grinding
,”
CIRP Ann.
,
45
(
1
), pp.
299
302
. 10.1016/S0007-8506(07)63067-4
12.
Jin
,
T.
, and
Stephenson
,
D. J.
,
2008
, “
A Study of the Convection Heat Transfer Coefficients of Grinding Fluids
,”
CIRP Ann.
,
57
(
1
), pp.
367
370
. 10.1016/j.cirp.2008.03.074
13.
Rowe
,
W. B.
,
2001
, “
Temperature Case Studies in Grinding Including an Inclined Heat Source Model
,”
Proc. Inst. Mech. Eng., Part B
,
215
(
4
), pp.
473
491
. 10.1243/0954405011518449
14.
Morgan
,
M. N.
,
Barczak
,
L.
, and
Batako
,
A.
,
2012
, “
Temperatures in Fine Grinding With Minimum Quantity Lubrication (MQL)
,”
Int. J. Adv. Manuf. Technol.
,
60
(
9–12
), pp.
951
958
. 10.1007/s00170-011-3678-7
15.
Jin
,
T.
,
Stephenson
,
D. J.
, and
Rowe
,
W. B.
,
2003
, “
Estimation of the Convection Heat Transfer Coefficient of Coolant Within the Grinding Zone
,”
Proc. Inst. Mech. Eng., Part B
,
217
(
3
), pp.
397
407
. 10.1243/095440503321590550
16.
Rowe
,
W. B.
,
Black
,
S.
,
Mills
,
B.
,
Morgan
,
M. N.
, and
Qi
,
H. S.
,
1997
, “
Grinding Temperatures and Energy Partitioning
,”
Proc. R. Soc. London, Ser. A
,
453
(
1960
), pp.
1083
1104
. 10.1098/rspa.1997.0061
17.
Rowe
,
W. B.
,
2014
,
Principles of Modern Grinding Technology
,
Elsevier
,
Oxford
, p.
129
.
18.
Rowe
,
W. B.
,
2017
, “
Temperatures in Grinding-A Review
,”
ASME J. Manuf. Sci. Eng.
,
139
, pp.
1
6
.
19.
Rowe
,
W. B.
,
Qi
,
H. S.
,
Morgan
,
M. N.
, and
Zheng
,
H. W.
,
1993
, “
The Effect of Deformation in the Contact Area in Grinding
,”
CIRP Ann.
,
42
(
1
), pp.
409
412
. 10.1016/S0007-8506(07)62473-1
20.
Zhang
,
L.
,
Rowe
,
W. B.
, and
Morgan
,
M. N.
,
2013
, “
An Improved Fluid Convection Solution in Conventional Grinding
,”
Proc. Inst. Mech. Eng., Part B
,
227
(
6
), pp.
832
838
. 10.1177/0954405413476392
21.
Zhang
,
L.
, and
Morgan
,
M. N.
,
2013
, “
A Model of the Fluid Convective Cooling in Grinding Process
,”
Adv. Mater. Res.
,
797
, pp.
299
304
. 10.4028/www.scientific.net/AMR.797.299
22.
Yang
,
S.
, and
Tao
,
W.
,
2003
,
Heat Transfer
,
Higher Education Press
,
Beijing, P.R.C.
23.
Howes
,
T. D.
,
1990
, “
Assessment of the Cooling and Lubricative Properties of Grinding Fluids
,”
CIRP Ann.
,
39
(
1
), pp.
313
316
. 10.1016/S0007-8506(07)61061-0
24.
Lin
,
B.
,
Morgan
,
M. N.
,
Chen
,
X. W.
, and
Wang
,
Y. K.
,
2009
, “
Study on the Convection Heat Transfer Coefficient of Coolant and the Maximum Temperature in the Grinding Process
,”
Int. J. Adv. Manuf. Technol.
,
42
(
11
), pp.
1175
1186
. 10.1007/s00170-008-1668-1
25.
Barczak
,
L.
,
Batako
,
A.
, and
Morgan
,
M.
,
2010
, “
A Study of Plane Grinding Under MQL
,”
Int. J. Mach. Tools Manuf.
,
50
(
11
), pp.
977
985
. 10.1016/j.ijmachtools.2010.07.005
You do not currently have access to this content.