Abstract

Bioprinting has many potential applications in drug screening, tissue engineering, and regenerative medicine. In extrusion-based bioprinting, the extruded strand is the fundamental building block for printed constructs and needs to be of good quality and continuous in structure. In recent years, many studies have been conducted on extrusion-based bioprinting. However, values of process parameters leading to continuous extrusion of strands have rarely been reported. In this paper, feasible regions of bioink composition, extrusion pressure, and needle size for continuous strand extrusion have been evaluated. The information on feasible regions for extruding continuous strands, provided in this paper, can be useful in deciding appropriate extrusion pressure and needle size for the bioink of different compositions (ratios of alginate:methylcellulose) in extrusion-based bioprinting.

References

References
1.
Derakhshanfar
,
S.
,
Mbeleck
,
R.
,
Xu
,
K.
,
Zhang
,
X.
,
Zhong
,
W.
, and
Xing
,
M.
,
2018
, “
3D Bioprinting for Biomedical Devices and Tissue Engineering: A Review of Recent Trends and Advances
,”
Bioact. Mater.
,
3
(
2
), pp.
144
156
. 10.1016/j.bioactmat.2017.11.008
2.
Ozbolat
,
I. T.
,
2015
, “
Bioprinting Scale-Up Tissue and Organ Constructs for Transplantation
,”
Trends Biotechnol.
,
33
(
7
), pp.
395
400
. 10.1016/j.tibtech.2015.04.005
3.
Ozbolat
,
I. T.
, and
Hospodiuk
,
M.
,
2016
, “
Current Advances and Future Perspectives in Extrusion-Based Bioprinting
,”
Biomaterials
,
76
, pp.
321
343
. 10.1016/j.biomaterials.2015.10.076
4.
Panwar
,
A.
, and
Tan
,
L.
,
2016
, “
Current Status of Bioinks for Micro-Extrusion-Based 3D Bioprinting
,”
Molecules
,
21
(
6
), p.
685
. 10.3390/molecules21060685
5.
Kundu
,
J.
,
Shim
,
J. H.
,
Jang
,
J.
,
Kim
,
S. W.
, and
Cho
,
D. W.
,
2015
, “
An Additive Manufacturing-Based PCL–Alginate–Chondrocyte Bioprinted Scaffold for Cartilage Tissue Engineering
,”
J. Tissue Eng. Regener. Med.
,
9
(
11
), pp.
1286
1297
. 10.1002/term.1682
6.
Liu
,
W.
,
Heinrich
,
M. A.
,
Zhou
,
Y.
,
Akpek
,
A.
,
Hu
,
N.
,
Liu
,
X.
,
Guan
,
X.
,
Zhong
,
Z.
,
Jin
,
X.
, and
Khademhosseini
,
A.
,
2017
, “
Extrusion Bioprinting of Shear-Thinning Gelatin Methacryloyl Bioinks
,”
Adv. Healthcare Mater.
,
6
(
12
), p.
1601451
. 10.1002/adhm.201601451
7.
Nair
,
K.
,
Gandhi
,
M.
,
Khalil
,
S.
,
Yan
,
K. C.
,
Marcolongo
,
M.
,
Barbee
,
K.
, and
Sun
,
W.
,
2009
, “
Characterization of Cell Viability During Bioprinting Processes
,”
Biotechnol. J.: Healthcare Nutrition Technol.
,
4
(
8
), pp.
1168
1177
.
8.
Nguyen
,
D.
,
Hägg
,
D. A.
,
Forsman
,
A.
,
Ekholm
,
J.
,
Nimkingratana
,
P.
,
Brantsing
,
C.
,
Kalogeropoulos
,
T.
,
Zaunz
,
S.
,
Concaro
,
S.
, and
Brittberg
,
M.
,
2017
, “
Cartilage Tissue Engineering by the 3D Bioprinting of iPS Cells in a Nanocellulose/Alginate Bioink
,”
Sci. Rep.
,
7
(
1
), p.
658
. 10.1038/s41598-017-00690-y
9.
Paxton
,
N.
,
Smolan
,
W.
,
Böck
,
T.
,
Melchels
,
F.
,
Groll
,
J.
, and
Jungst
,
T.
,
2017
, “
Proposal to Assess Printability of Bioinks for Extrusion-Based Bioprinting and Evaluation of Rheological Properties Governing Bioprintability
,”
Biofabrication
,
9
(
4
), p.
044107
. 10.1088/1758-5090/aa8dd8
10.
Song
,
S. J.
,
Choi
,
J.
,
Park
,
Y. D.
,
Lee
,
J. J.
,
Hong
,
S. Y.
, and
Sun
,
K.
,
2010
, “
A Three-Dimensional Bioprinting System for Use With a Hydrogel-Based Biomaterial and Printing Parameter Characterization
,”
Artif. Organs
,
34
(
11
), pp.
1044
1048
. 10.1111/j.1525-1594.2010.01143.x
11.
Billiet
,
T.
,
Gevaert
,
E.
,
De Schryver
,
T.
,
Cornelissen
,
M.
, and
Dubruel
,
P.
,
2014
, “
The 3D Printing of Gelatin Methacrylamide Cell-Laden Tissue-Engineered Constructs with High Cell Viability
,”
Biomaterials
,
35
(
1
), pp.
49
62
. 10.1016/j.biomaterials.2013.09.078
12.
Fedorovich
,
N. E.
,
De Wijn
,
J. R.
,
Verbout
,
A. J.
,
Alblas
,
J.
, and
Dhert
,
W. J.
,
2008
, “
Three-Dimensional Fiber Deposition of Cell-Laden, Viable, Patterned Constructs for Bone Tissue Printing
,”
Tissue Eng., Part A
,
14
(
1
), pp.
127
133
. 10.1089/ten.a.2007.0158
13.
Suntornnond
,
R.
,
Tan
,
E.
,
An
,
J.
, and
Chua
,
C.
,
2016
, “
A Mathematical Model on the Resolution of Extrusion Bioprinting for the Development of new Bioinks
,”
Materials
,
9
(
9
), p.
756
. 10.3390/ma9090756
14.
Lode
,
A.
,
Krujatz
,
F.
,
Brüggemeier
,
S.
,
Quade
,
M.
,
Schütz
,
K.
,
Knaack
,
S.
,
Weber
,
J.
,
Bley
,
T.
, and
Gelinsky
,
M.
,
2015
, “
Green Bioprinting: Fabrication of Photosynthetic Algae-Laden Hydrogel Scaffolds for Biotechnological and Medical Applications
,”
Eng. Life Sci.
,
15
(
2
), pp.
177
183
. 10.1002/elsc.201400205
15.
Domozych
,
D. S.
,
2001
, “Algal cell walls,” e LS. Domozych, D.S.,2011, Algal Cell Walls. In eLS, (Ed.), doi:10.1002/9780470015902.a0000315.pub3.
16.
Murphy
,
S. V.
, and
Atala
,
A.
,
2014
, “
3D Bioprinting of Tissues and Organs
,”
Nat. Biotechnol.
,
32
(
8
), pp.
773
785
. 10.1038/nbt.2958
You do not currently have access to this content.