Abstract

Predicting the part thermal history during the selective laser melting (SLM) process is critical to understand the influence of the process parameters to the part quality. Existing finite element based thermal analysis is mainly associated with simplifications in mesh configuration, heat source model, and domain size. The proposed work presents an efficient adaptive remeshing technique that enables part-scale SLM process simulations and helps reduce model size without sacrificing accuracy. The proposed work enables the part-scale simulation computationally efficient using existing commercial solvers. In this paper, the SLM process simulation for an entire part was developed considering different process parameters. The model predicts the influence of the process parameters on part thermal history, melt pool statistics, and lack-of-fusion porosity. The predicted results find an agreement with the experimental results in literature. Furthermore, the remeshing technique is demonstrated to be more computationally efficient than the existing element death and birth approach and also shows clear advantages compared with existing adaptive remeshing approaches.

References

References
1.
Thijs
,
L.
,
Verhaeghe
,
F.
,
Craeghs
,
T.
,
Van Humbeeck
,
J.
, and
Kruth
,
J.-P.
,
2010
, “
A Study of the Microstructural Evolution During Selective Laser Melting of Ti–6Al–4V
,”
Acta Mater.
,
58
(
9
), pp.
3303
3312
. 10.1016/j.actamat.2010.02.004
2.
Zhang
,
S.
,
Wei
,
Q.
,
Cheng
,
L.
,
Li
,
S.
, and
Shi
,
Y.
,
2014
, “
Effects of Scan Line Spacing on Pore Characteristics and Mechanical Properties of Porous Ti6Al4V Implants Fabricated by Selective Laser Melting
,”
Mater. Des.
,
63
, pp.
185
193
. 10.1016/j.matdes.2014.05.021
3.
Gong
,
H.
,
Rafi
,
K.
,
Gu
,
H.
,
Starr
,
T.
, and
Stucker
,
B.
,
2014
, “
Analysis of Defect Generation in Ti–6Al–4V Parts Made Using Powder Bed Fusion Additive Manufacturing Processes
,”
Addit. Manuf.
,
1
, pp.
87
98
. 10.1016/j.addma.2014.08.002
4.
Dilip
,
J. J. S.
,
Zhang
,
S.
,
Teng
,
C.
,
Zeng
,
K.
,
Robinson
,
C.
,
Pal
,
D.
, and
Stucker
,
B.
,
2017
, “
Influence of Processing Parameters on the Evolution of Melt Pool, Porosity, and Microstructures in Ti-6Al-4V Alloy Parts Fabricated by Selective Laser Melting
,”
Prog. Addit. Manuf.
,
2
(
3
), pp.
157
167
. 10.1007/s40964-017-0030-2
5.
Zhao
,
X.
,
Li
,
S.
,
Zhang
,
M.
,
Liu
,
Y.
,
Sercombe
,
T. B.
,
Wang
,
S.
,
Hao
,
Y.
,
Yang
,
R.
, and
Murr
,
L. E.
,
2016
, “
Comparison of the Microstructures and Mechanical Properties of Ti–6Al–4V Fabricated by Selective Laser Melting and Electron Beam Melting
,”
Mater. Des.
,
95
, pp.
21
31
. 10.1016/j.matdes.2015.12.135
6.
Leuders
,
S.
,
Thöne
,
M.
,
Riemer
,
A.
,
Niendorf
,
T.
,
Tröster
,
T.
,
Richard
,
H. A.
, and
Maier
,
H. J.
,
2013
, “
On the Mechanical Behaviour of Titanium Alloy TiAl6V4 Manufactured by Selective Laser Melting: Fatigue Resistance and Crack Growth Performance
,”
Int. J. Fatigue
,
48
, pp.
300
307
. 10.1016/j.ijfatigue.2012.11.011
7.
Gong
,
H.
,
Rafi
,
K.
,
Gu
,
H.
,
Janaki Ram
,
G. D.
,
Starr
,
T.
, and
Stucker
,
B.
,
2015
, “
Influence of Defects on Mechanical Properties of Ti–6Al–4V Components Produced by Selective Laser Melting and Electron Beam Melting
,”
Mater. Des.
,
86
, pp.
545
554
. 10.1016/j.matdes.2015.07.147
8.
Ali
,
H.
,
Ghadbeigi
,
H.
, and
Mumtaz
,
K.
,
2018
, “
Effect of Scanning Strategies on Residual Stress and Mechanical Properties of Selective Laser Melted Ti6Al4V
,”
Mater. Sci. Eng., A
,
712
, pp.
175
187
. 10.1016/j.msea.2017.11.103
9.
Li
,
C.
,
Liu
,
J. F.
,
Fang
,
X. Y.
, and
Guo
,
Y. B.
,
2017
, “
Efficient Predictive Model of Part Distortion and Residual Stress in Selective Laser Melting
,”
Addit. Manuf.
,
17
, pp.
157
168
. 10.1016/j.addma.2017.08.014
10.
Khairallah
,
S. A.
, and
Anderson
,
A.
,
2014
, “
Mesoscopic Simulation Model of Selective Laser Melting of Stainless Steel Powder
,”
J. Mater. Process. Technol.
,
214
(
11
), pp.
2627
2636
. 10.1016/j.jmatprotec.2014.06.001
11.
Khairallah
,
S. A.
,
Anderson
,
A. T.
,
Rubenchik
,
A.
, and
King
,
W. E.
,
2016
, “
Laser Powder-Bed Fusion Additive Manufacturing: Physics of Complex Melt Flow and Formation Mechanisms of Pores, Spatter, and Denudation Zones
,”
Acta Mater.
,
108
, pp.
36
45
. 10.1016/j.actamat.2016.02.014
12.
Mindt
,
H. W.
,
Desmaison
,
O.
,
Megahed
,
M.
,
Peralta
,
A.
, and
Neumann
,
J.
,
2018
, “
Modeling of Powder Bed Manufacturing Defects
,”
J. Mater. Eng. Perform.
,
27
(
1
), pp.
32
43
. 10.1007/s11665-017-2874-5
13.
Shrestha
,
S.
, and
Kevin Chou
,
Y.
,
2019
, “
A Numerical Study on the Keyhole Formation During Laser Powder Bed Fusion Process
,”
ASME J. Manuf. Sci. Eng.
,
141
(
10
), p.
101002
. 10.1115/1.4044100
14.
Cheng
,
B.
,
Lane
,
B.
,
Whiting
,
J.
, and
Chou
,
K.
,
2018
, “
A Combined Experimental-Numerical Method to Evaluate Powder Thermal Properties in Laser Powder Bed Fusion
,”
ASME J. Manuf. Sci. Eng.
,
140
(
11
), p.
111008
. 10.1115/1.4040877
15.
Pal
,
D.
,
Kutty
,
K. H.
,
Zeng
,
K.
,
Moreland
,
A.
,
Hicks
,
A.
,
Beeler
,
D.
, and
Stucker
,
B.
,
2016
, “
A Generalized Feed-Forward Dynamic Adaptive Mesh Refinement and Derefinement Finite-Element Framework for Metal Laser Sintering—Part II: Nonlinear Thermal Simulations and Validations 2
,”
ASME J. Manuf. Sci. Eng.
,
138
(
6
), p.
061003
. 10.1115/1.4032078
16.
Hussein
,
A.
,
Hao
,
L.
,
Yan
,
C.
, and
Everson
,
R.
,
2013
, “
Finite Element Simulation of the Temperature and Stress Fields in Single Layers Built Without-Support in Selective Laser Melting
,”
Mater. Des.
,
52
, pp.
638
647
. 10.1016/j.matdes.2013.05.070
17.
Roy
,
S.
,
Juha
,
M.
,
Shephard
,
M. S.
, and
Maniatty
,
A. M.
,
2018
, “
Heat Transfer Model and Finite Element Formulation for Simulation of Selective Laser Melting
,”
Comput. Mech.
,
62
(
3
), pp.
273
284
. 10.1007/s00466-017-1496-y
18.
Karayagiz
,
K.
,
Elwany
,
A.
,
Tapia
,
G.
,
Franco
,
B.
,
Johnson
,
L.
,
Ma
,
J.
,
Karaman
,
I.
, and
Arróyave
,
R.
,
2018
, “
Numerical and Experimental Analysis of Heat Distribution in the Laser Powder Bed Fusion of Ti-6Al-4V
,”
IISE Trans.
,
51
(
2
), pp.
1
17
. 10.1080/24725854.2018.1461964
19.
Mishra
,
A. K.
, and
Kumar
,
A.
,
2019
, “
Numerical and Experimental Analysis of the Effect of Volumetric Energy Absorption in Powder Layer on Thermal-Fluidic Transport in Selective Laser Melting of Ti6Al4V
,”
Opt. Laser Technol.
,
111
, pp.
227
239
. 10.1016/j.optlastec.2018.09.054
20.
Roberts
,
I. A.
,
Wang
,
C. J.
,
Esterlein
,
R.
,
Stanford
,
M.
, and
Mynors
,
D. J.
,
2009
, “
A Three-Dimensional Finite Element Analysis of the Temperature Field During Laser Melting of Metal Powders in Additive Layer Manufacturing
,”
Int. J. Mach. Tools Manuf.
,
49
(
12–13
), pp.
916
923
. 10.1016/j.ijmachtools.2009.07.004
21.
Cattenone
,
A.
,
Morganti
,
S.
,
Alaimo
,
G.
, and
Auricchio
,
F.
,
2019
, “
Finite Element Analysis of Additive Manufacturing Based on Fused Deposition Modeling: Distortions Prediction and Comparison With Experimental Data
,”
ASME J. Manuf. Sci. Eng.
,
141
(
1
), p.
011010
. 10.1115/1.4041626
22.
Jayanath
,
S.
, and
Achuthan
,
A.
,
2018
, “
A Computationally Efficient Finite Element Framework to Simulate Additive Manufacturing Processes
,”
ASME J. Manuf. Sci. Eng.
,
140
(
4
), p.
041009
. 10.1115/1.4039092
23.
Mechanical APDL 2019 R2
, 2019, “
Advanced Analysis Guide
,”
ANSYS® Academic Research Mechanical
.
24.
Moran
,
T. P.
,
Li
,
P.
,
Warner
,
D. H.
, and
Phan
,
N.
,
2018
, “
Utility of Superposition-Based Finite Element Approach for Part-Scale Thermal Simulation in Additive Manufacturing
,”
Addit. Manuf.
,
21
, pp.
215
219
. 10.1016/j.addma.2018.02.015
25.
Patil
,
N.
,
Pal
,
D.
,
Khalid Rafi
,
H.
,
Zeng
,
K.
,
Moreland
,
A.
,
Hicks
,
A.
,
Beeler
,
D.
, and
Stucker
,
B.
,
2015
, “
A Generalized Feed Forward Dynamic Adaptive Mesh Refinement and Derefinement Finite Element Framework for Metal Laser Sintering—Part I: Formulation and Algorithm Development
,”
ASME J. Manuf. Sci. Eng.
,
137
(
4
), p.
041001
. 10.1115/1.4030059
26.
Gouge
,
M.
,
Denlinger
,
E.
,
Irwin
,
J.
,
Li
,
C.
, and
Michaleris
,
P.
,
2019
, “
Experimental Validation of Thermo-Mechanical Part-Scale Modeling for Laser Powder Bed Fusion Processes
,”
Addit. Manuf.
,
29
, p.
100771
. 10.1016/j.addma.2019.06.022
27.
Li
,
C.
,
Denlinger
,
E. R.
,
Gouge
,
M. F.
,
Irwin
,
J. E.
, and
Michaleris
,
P.
,
2019
, “
Numerical Verification of an Octree Mesh Coarsening Strategy for Simulating Additive Manufacturing Processes
,”
Addit. Manuf.
,
30
, p.
100903
. 10.1016/j.addma.2019.100903
28.
Olleak
,
A.
, and
Xi
,
Z.
,
2018
, “
Finite Element Modeling of the Selective Laser Melting Process for Ti-6Al-4V
,”
Solid Freeform Fabrication 2018: Proceedings of the 29th Annual International
,
Austin, TX
,
Aug. 13–15
, pp.
1710
1720
.
29.
Logan
,
D. L.
,
2011
,
A First Course in the Finite Element Method
, 5th ed.,
Cengage
,
Independence, KY
.
30.
Boivineau
,
M.
,
Cagran
,
C.
,
Doytier
,
D.
,
Eyraud
,
V.
,
Nadal
,
M.-H.
,
Wilthan
,
B.
, and
Pottlacher
,
G.
,
2006
, “
Thermophysical Properties of Solid and Liquid Ti-6Al-4V (TA6V) Alloy
,”
Int. J. Thermophys.
,
27
(
2
), pp.
507
529
. 10.1007/PL00021868
31.
Mahmoudi
,
M.
,
Tapia
,
G.
,
Karayagiz
,
K.
,
Franco
,
B.
,
Ma
,
J.
,
Arroyave
,
R.
,
Karaman
,
I.
, and
Elwany
,
A.
,
2018
, “
Multivariate Calibration and Experimental Validation of a 3D Finite Element Thermal Model for Laser Powder Bed Fusion Metal Additive Manufacturing
,”
Integr. Mater. Manuf. Innov.
,
7
(
3
), pp.
116
135
. 10.1007/s40192-018-0113-z
32.
Wei
,
L. C.
,
Ehrlich
,
L. E.
,
Powell-Palm
,
M. J.
,
Montgomery
,
C.
,
Beuth
,
J.
, and
Malen
,
J. A.
,
2018
, “
Thermal Conductivity of Metal Powders for Powder bed Additive Manufacturing
,”
Addit. Manuf.
,
21
, pp.
201
208
. 10.1016/j.addma.2018.02.002
33.
Luo
,
Z.
, and
Zhao
,
Y.
,
2018
, “
A Survey of Finite Element Analysis of Temperature and Thermal Stress Fields in Powder Bed Fusion Additive Manufacturing
,”
Addit. Manuf.
,
21
, pp.
318
332
. 10.1016/j.addma.2018.03.022
34.
Song
,
B.
,
Dong
,
S.
,
Zhang
,
B.
,
Liao
,
H.
, and
Coddet
,
C.
,
2012
, “
Effects of Processing Parameters on Microstructure and Mechanical Property of Selective Laser Melted Ti6Al4V
,”
Mater. Des.
,
35
, p.
120
125
. 10.1016/j.matdes.2011.09.051
35.
King
,
W. E.
,
Anderson
,
A. T.
,
Ferencz
,
R. M.
,
Hodge
,
N. E.
,
Kamath
,
C.
,
Khairallah
,
S. A.
, and
Rubenchik
,
A. M.
,
2015
, “
Laser Powder Bed Fusion Additive Manufacturing of Metals; Physics, Computational, and Materials Challenges
,”
Appl. Phys. Rev.
,
2
(
4
), pp.
041304
. 10.1063/1.4937809
36.
Trapp
,
J.
,
Rubenchik
,
A. M.
,
Guss
,
G.
, and
Matthews
,
M. J.
,
2017
, “
In Situ Absorptivity Measurements of Metallic Powders During Laser Powder-Bed Fusion Additive Manufacturing
,”
Appl. Mater. Today
,
9
, pp.
341
349
. 10.1016/j.apmt.2017.08.006
37.
Zeng
,
K.
,
Pal
,
D.
, and
Stucker
,
B.
,
2012
, “
A Review of Thermal Analysis Methods in Laser Sintering and Selective Laser Melting
,”
23rd Annual International Solid Freeform Fabrication Symposium
,
Austin, TX
,
Aug. 6–8
, pp.
796
814
.
38.
King
,
W. E.
,
Barth
,
H. D.
,
Castillo
,
V. M.
,
Gallegos
,
G. F.
,
Gibbs
,
J. W.
,
Hahn
,
D. E.
,
Kamath
,
C.
, and
Rubenchik
,
A. M.
,
2014
, “
Observation of Keyhole-Mode Laser Melting in Laser Powder-Bed Fusion Additive Manufacturing
,”
J. Mater. Process. Tech.
,
214
(
12
), pp.
2915
2925
. 10.1016/j.jmatprotec.2014.06.005
39.
Moges
,
T.
,
Ameta
,
G.
, and
Witherell
,
P.
,
2019
, “
A Review of Model Inaccuracy and Parameter Uncertainty in Laser Powder Bed Fusion Models and Simulations
,”
ASME J. Manuf. Sci. Eng.
,
141
(
4
), p.
040801
. 10.1115/1.4042789
40.
Gong
,
H.
,
Gu
,
H.
,
Zeng
,
K.
,
Dilip
,
J.J.S.
,
Pal
,
D.
,
Stucker
,
B.
,
Christiansen
,
D.
,
Beuth
,
J.
, and
Lewandowski
,
J.J.
,
2014
, “
Melt Pool Characterization for Selective Laser Melting of Ti-6Al-4V Pre-Alloyed Powder
,”
25th Annual International Solid Freeform Fabrication Symposium
,
Austin, TX
,
Aug. 4–6
, pp.
256
267
.
41.
Li
,
C.
,
Liu
,
Z. Y.
,
Fang
,
X. Y.
, and
Guo
,
Y. B.
,
2018
, “
On the Simulation Scalability of Predicting Residual Stress and Distortion in Selective Laser Melting
,”
ASME J. Manuf. Sci. Eng.
,
140
(
4
), p.
041013
. 10.1115/1.4038893
You do not currently have access to this content.