Abstract

Welding is a major manufacturing process that joins two or more pieces of materials together through heating/mixing them followed by cooling/solidification. The goal of welding manufacturing is to join materials together to meet service requirements at lowest costs. Advanced welding manufacturing is to use scientific methods to realize this goal. This paper views advanced welding manufacturing as a three step approach: (1) pre-design that selects process and joint design based on available processes (properties, capabilities, and costs); (2) design that uses models to predict the result from a given set of welding parameters and minimizes a cost function for optimizing the welding parameters; and (3) real-time sensing and control that overcome the deviations of welding conditions from their nominal ones used in optimizing the welding parameters by adjusting the welding parameters based on such real-time sensing and feedback control. The paper analyzes how these three steps depend on process properties/capabilities, process innovations, predictive models, numerical models for fluid dynamics, numerical models for structures, real-time sensing, and dynamic control. The paper also identifies the challenges in obtaining ideal solutions and reviews/analyzes the existing efforts toward better solutions. Special attention and analysis have been given to (1) gas tungsten arc welding (GTAW) and gas metal arc welding (GMAW) as benchmark processes for penetration and materials filling; (2) keyhole plasma arc welding (PAW), keyhole-tungsten inert gas (K-TIG), and keyhole laser welding as improved/capable penetrative processes; (3) friction stir welding (FSW) as a special penetrative low heat input process; (4) alternating current (AC) GMAW and double-electrode GMAW as improved materials filling processes; (5) efforts in numerical modeling for fluid dynamics; (6) efforts in numerical modeling for structures; (7) challenges and efforts in seam tracking and weld pool monitoring; (8) challenges and efforts in monitoring of keyhole laser welding and FSW; and (9) efforts in advanced sensing, data fusion/sensor fusion, and process control using machine learning/deep learning, model predictive control (MPC), and adaptive control.

References

1.
AWS D1.3/D1.3M:2018
,
2018
,
An American National Standard: Structural Welding Code—Sheet Steel
, 6th ed.,
American Welding Society
,
Miami, FL
.
2.
Welding Handbook
,
2007
,
Volume 3—Welding Processes Part 2
, 9th ed.,
American Welding Society
,
Miami, FL
.
3.
Welding Handbook
,
2004
,
Volume 2—Welding Processes Part 1
, 9th ed.,
American Welding Society
,
Miami, FL
.
4.
Paskell
,
T.
,
LUndin
,
C.
, and
Castner
,
H.
,
1997
, “
GTAW Flux Increases Weld Joint Penetration
,”
Weld. J.
,
76
(
4
), pp.
57
62
.
5.
Howse
,
D. S.
, and
Lucas
,
W.
,
2000
, “
Investigation Into Arc Constriction by Active Fluxes for Tungsten Inert Gas Welding
,”
Sci. Technol. Weld. Joi.
,
5
(
3
), pp.
189
193
. 10.1179/136217100101538191
6.
Lu
,
S. P.
,
Fujii
,
H.
,
Sugiyama
,
H.
,
Tanaka
,
M.
, and
Nogi
,
K.
,
2002
, “
Weld Penetration and Marangoni Convection With Oxide Fluxes in GTA Welding
,”
Mater. Trans.
,
43
(
11
), pp.
2926
2931
. 10.2320/matertrans.43.2926
7.
Chen
,
S. J.
,
Jiang
,
F.
,
Lu
,
Y. S.
, and
Zhang
,
Y. M.
,
2014
, “
Separation of Arc Plasma and Current in Electrical Arc—An Initial Study
,”
Weld. J.
,
93
(
7
), pp.
253s
261s
.
8.
Soderstrom
,
E. J.
,
Scott
,
K. M.
, and
Mendez
,
P. F.
,
2011
, “
Calorimetric Measurement of Droplet Temperature in GMAW
,”
Weld. J.
,
90
(
4
), pp.
77S
84S
.
9.
Ogino
,
Y.
, and
Hirata
,
Y.
,
2015
, “
Numerical Simulation of Metal Transfer in Argon Gas-Shielded GMAW
,”
Weld. World
,
59
(
4
), pp.
465
473
. 10.1007/s40194-015-0221-8
10.
Hu
,
J.
, and
Tsai
,
H. L.
,
2006
, “
Effects of Current on Droplet Generation and Arc Plasma in Gas Metal Arc Welding
,”
J. Appl. Phys.
,
100
(
5
), p.
053304
. 10.1063/1.2337261
11.
Nguyen Van
,
A.
,
Tashiro
,
S.
,
Van
,
B.
, and
Tanaka
,
M.
,
2017
, “
Development of Plasma-MIG Hybrid Welding Process
,”
J. Japan Weld. Soc.
,
35
(
2
), pp.
132
136
. 10.2207/qjjws.35.132s,
12.
Ton
,
H.
,
1975
, “
Physical Properties of the Plasma-MIG Welding Arc
,”
J. Phys. D Appl. Phys.
,
8
(
8
), pp.
922
933
. 10.1088/0022-3727/8/8/006
13.
AWS
,
1973
,
Recommended Practices for Plasma-Arc Welding—AWS C5.1-73 an American National Standard
,
American Welding Society
,
Miami, FL
.
14.
Zhang
,
S. B.
, and
Zhang
,
Y. M.
,
2001
, “
Efflux Plasma Charge-Based Sensing and Control of Joint Penetration During Keyhole Plasma Arc Welding
,”
Weld. J.
,
80
(
7
), pp.
157S
162S
.
15.
Jarvis
,
B. L.
, and
Ahmed
,
N. U.
,
2000
, “
Development of Keyhole Mode Gas Tungsten Arc Welding Process
,”
Sci. Technol. Weld. Joi.
,
5
(
1
), pp.
1
7
. 10.1179/136217100322910624
16.
Lathabai
,
S.
,
Jarvis
,
B. L.
, and
Barton
,
K. J.
,
2001
, “
Comparison of Keyhole and Conventional Gas Tungsten arc Welds in Commercially Pure Titanium
,”
Mater. Sci. Eng. A Struct. Mater.
,
299
(
1–2
), pp.
81
93
. 10.1016/S0921-5093(00)01408-8
17.
Lohse
,
M.
,
Fuessel
,
U.
,
Schuster
,
H.
,
Friedel
,
J.
, and
Schnick
,
M.
,
2013
, “
Keyhole Welding With CF-TIG (Cathode Focussed GTA)
,”
Weld. World
,
57
(
5
), pp.
735
741
. 10.1007/s40194-013-0074-y
18.
Feng
,
Y.
,
Luo
,
Z.
,
Liu
,
Z.
,
Li
,
Y.
,
Luo
,
Y.
, and
Huang
,
Y.
,
2015
, “
Keyhole Gas Tungsten Arc Welding of AISI 316L Stainless Steel
,”
Mater. Des.
,
85
, pp.
24
31
. 10.1016/j.matdes.2015.07.011
19.
Liu
,
Z.
,
Fang
,
Y.
,
Cui
,
S.
,
Luo
,
Z.
,
Liu
,
W.
,
Liu
,
Z.
,
Jiang
,
Q.
, and
Yi
,
S.
,
2016
, “
Stable Keyhole Welding Process With K-TIG
,”
J. Mater. Process. Technol.
,
238
, pp.
65
72
. 10.1016/j.jmatprotec.2016.07.005
20.
Liu
,
Z.
,
Fang
,
Y.
,
Cui
,
S.
,
Yi
,
S.
,
Qiu
,
J.
,
Jiang
,
Q.
,
Liu
,
W.
, and
Luo
,
Z.
,
2017
, “
Keyhole Thermal Behavior in GTAW Welding Process
,”
Int. J. Therm. Sci.
,
114
, pp.
352
362
. 10.1016/j.ijthermalsci.2017.01.005
21.
Cui
,
S.
,
Liu
,
Z.
,
Fang
,
Y.
,
Luo
,
Z.
,
Manladan
,
S. M.
, and
Yi
,
S.
,
2017
, “
Keyhole Process in K-TIG Welding on 4 mm Thick 304 Stainless
,”
J. Mater. Process. Technol.
,
243
, pp.
217
228
. 10.1016/j.jmatprotec.2016.12.027
22.
Liu
,
Z.
,
Fang
,
Y.
,
Qiu
,
J.
,
Feng
,
M.
,
Luo
,
Z.
, and
Yuan
,
J.
,
2017
, “
Stabilization of Weld Pool Through Jet Flow Argon Gas Backing in C-Mn Steel Keyhole TIG Welding
,”
J. Mater. Process. Technol.
,
250
, pp.
132
143
. 10.1016/j.jmatprotec.2017.07.008
23.
Liu
,
Z.
,
Fang
,
Y.
,
Cui
,
S.
,
Yi
,
S.
,
Qiu
,
J.
,
Jiang
,
Q.
,
Liu
,
W.
, and
Luo
,
Z.
,
2017
, “
Sustaining the Open Keyhole in Slow-Falling Current Edge During K-TIG Process: Principle and Parameters
,”
Int. J. Heat Mass Transfer
,
112
, pp.
255
266
. 10.1016/j.ijheatmasstransfer.2017.04.092
24.
Fan
,
W.
,
Ao
,
S.
,
Huang
,
Y.
,
Liu
,
W.
,
Li
,
Y.
,
Feng
,
Y.
,
Luo
,
Z.
, and
Wu
,
B.
,
2017
, “
Water Cooling Keyhole Gas Tungsten Arc Welding of HSLA Steel
,”
Int. J. Adv. Manuf. Technol.
,
92
(
5–8
), pp.
2207
2216
. 10.1007/s00170-017-0234-0
25.
Fei
,
Z.
,
Pan
,
Z.
,
Cuiuri
,
D.
,
Li
,
H.
,
Wu
,
B.
,
Ding
,
D.
,
Su
,
L.
, and
Gazder
,
A. A.
,
2018
, “
Investigation Into the Viability of K-TIG for Joining Armour Grade Quenched and Tempered Steel
,”
J. Manuf. Process.
,
32
, pp.
482
493
. 10.1016/j.jmapro.2018.03.014
26.
Li
,
X.
,
Gong
,
B.
,
Deng
,
C.
, and
Li
,
Y.
,
2018
, “
Failure Mechanism Transition of Hydrogen Embrittlement in AISI 304 K-TIG Weld Metal Under Tensile Loading
,”
Corros. Sci.
,
130
, pp.
241
251
. 10.1016/j.corsci.2017.10.032
27.
Fang
,
Y.
,
Liu
,
Z.
,
Cui
,
S.
,
Zhang
,
Y.
,
Qiu
,
J.
, and
Luo
,
Z.
,
2017
, “
Improving Q345 Weld Microstructure and Mechanical Properties With High Frequency Current Arc in Keyhole Mode TIG Welding
,”
J. Mater. Process. Technol.
,
250
, pp.
280
288
. 10.1016/j.jmatprotec.2017.07.026
28.
Bachmann
,
M.
,
Gumenyuk
,
A.
, and
Rethmeier
,
M.
,
2016
, “
Welding With High-Power Lasers: Trends and Developments
,”
Phys. Procedia
,
83
, pp.
15
26
. 10.1016/j.phpro.2016.08.003
29.
Svenungssona
,
J.
,
Choqueta
,
I.
, and
Kaplanb
,
A. F. H.
,
2015
, “
Laser Welding Process—A Review of Keyhole Welding Modelling
,”
Phys. Procedia
,
78
, pp.
182
191
. 10.1016/j.phpro.2015.11.042
30.
Stanciu
,
E. M.
,
Păvălache
,
A. C.
,
Dumitru
,
G. M.
,
Dontu
,
O. G.
,
Besnea
,
D.
, and
Vasile
,
I. M.
,
2010
, “
Mechanism of Keyhole Formation in Laser Welding, The Romanian Review Precision Mechanics
,”
Opt. Mechatron.
,
20
(
38
), pp.
171
176
.
31.
Zhang
,
M. J.
,
Tang
,
K.
,
Zhang
,
J.
,
Mao
,
C.
,
Hu
,
Y.
, and
Chen
,
G.
,
2018
, “
Effects of Processing Parameters on Underfill Defects in Deep Penetration Laser Welding of Thick Plates
,”
J. Adv. Manuf. Technol.
,
96
(
1–4
), pp.
491
501
. 10.1007/s00170-018-1613-x
32.
Matsumoto
,
N.
,
Kawahito
,
Y.
,
Nishimoto
,
K.
, and
Katayama
,
S.
,
2017
, “
Effects of Laser Focusing Properties on Weldability in High-Power Fiber Laser Welding of Thick High-Strength Steel Plate
,”
J. Laser Appl.
,
29
(
1
), p.
012003
. 10.2351/1.4966258
33.
Bunaziv
,
I.
,
Dørum
,
C.
,
Nielsen
,
S. E.
,
Suikkanen
,
P.
,
Ren
,
X.
,
Nyhus
,
B.
,
Eriksson
,
M.
, and
Akselsen
,
O. M.
,
2020
, “
Laser-arc Hybrid Welding of 12- and 15-mm Thick Structural Steel
,”
Int. J. Adv. Manuf. Technol.
,
107
(
5–6
), pp.
2649
2669
. 10.1007/s00170-020-05192-2
34.
Liu
,
L. M.
, and
Hao
,
X. F.
,
2009
, “
Improvement of Laser Keyhole Formation With the Assistance of Arc Plasma in the Hybrid Welding Process of Magnesium Alloy
,”
Opt. Lasers Eng.
,
47
(
11
), pp.
1177
1182
. 10.1016/j.optlaseng.2009.06.003
35.
Zhang
,
Y. M.
, and
Liu
,
Y. C.
,
2003
, “
Modeling and Control of Quasi-Keyhole Arc Welding Process
,”
Control Eng. Pract.
,
Award Winning Applications-2002 IFAC World Congress
,
11
(
12
), pp.
1401
1411
. 10.1016/S0967-0661(03)00076-5
36.
Lu
,
W.
,
Zhang
,
Y. M.
, and
Lin
,
W.-Y.
,
2004
, “
Nonlinear Interval Model Control of Quasi-Keyhole Arc Welding Process
,”
Automatica
,
40
(
5
), pp.
805
813
. 10.1016/j.automatica.2003.11.017
37.
Lu
,
W.
,
Zhang
,
Y. M.
, and
Emmerson
,
J. E.
,
2004
, “
Sensing of Weld Pool Surface Using Non-Transferred Plasma Charge Sensor
,”
Meas. Sci. Technol.
,
15
(
5
), pp.
991
999
. 10.1088/0957-0233/15/5/031
38.
Lu
,
W.
, and
Zhang
,
Y.
,
2006
, “
Robust Sensing and Control of the Weld Pool Surface
,”
Meas. Sci. Technol.
,
17
(9), pp.
2437
2446
. 10.1088/0957-0233/17/9/010
39.
Zhang
,
Y. M.
, and
Liu
,
Y. C.
,
2007
, “
Control of Dynamic Keyhole Process
,”
Automatica
,
43
(
5
), pp.
876
884
. 10.1016/j.automatica.2006.11.008
40.
Li
,
Y.
,
Wang
,
L.
, and
Wu
,
C.
,
2019
, “
Simulation of Keyhole Plasma Arc Welding With Electro-Magneto-Thermo-Hydrodynamic Interactions
,”
Int. J. Adv. Manuf. Technol.
,
101
(
9–12
), pp.
9
12
. 10.1007/s00170-018-3067-6
41.
Jia
,
C. B.
,
Liu
,
X. F.
,
Wu
,
C. S.
, and
Lin
S. B.
,
2018
, “
Stereo Analysis on the Keyhole and Weld Pool Behaviors in K-PAW With Triple CCD Cameras
,”
J. Manuf. Process.
,
32
, pp.
754
762
. 10.1016/j.jmapro.2018.03.026
42.
Zhang
,
G.
,
Wu
,
C.
, and
Chen
,
J.
,
2018
, “
Single CCD-Based Sensing of Both Keyhole Exit and Weld Pool in Controlled-Pulse PAW
,”
Weld. World
,
62
(
2
), pp.
377
383
. 10.1007/s40194-017-0541-y
43.
Zhang
,
G. K.
,
Chen
,
J.
, and
Wu
,
C. S.
,
2017
, “
Simultaneous Sensing of Weld Pool and Keyhole in Controlled-Pulse PAW The Behaviors of the Keyhole and the Weld Pool in Plasma Arc Welding Can be Used to Indicate Weld Quality
,”
Weld. J.
,
96
(
3
), pp.
95s
103s
. 10.1007/s40194-017-0541-y
44.
Liu
,
Z. M.
,
Wu
,
C. S.
,
Liu
,
Y. K.
, and
Luo
,
Z.
,
2015
, “
Keyhole Behaviors Influence Weld Defects in Plasma Arc Welding Process
,”
Weld. J.
,
94
(
9
), pp.
281s
290s
.
45.
Liu
,
Z. M.
,
Liu
,
Y. K.
,
Wu
,
C. S.
, and
Luo
,
Z
,
2015
, “
Control of Keyhole Exit Position in Plasma Arc Welding Process
,”
Weld. J.
,
94
(
6
), pp.
196s
202s
.
46.
Liu
,
Z. M.
,
Wu
,
C. S.
, and
Chen
,
M. A.
,
2014
, “
Experimental Sensing of the Keyhole Exit Deviation From the Torch Axis in Plasma Arc Welding
,”
Int. J. Adv. Manuf. Technol.
,
71
(
5–8
), pp.
1209
1219
. 10.1007/s00170-013-5568-7
47.
Liu
,
Z. M.
,
Wu
,
C. S.
, and
Chen
,
J.
,
2013
, “
Sensing Dynamic Keyhole Behaviors in Controlled-Pulse Keyholing Plasma Arc Welding
,”
Weld. J.
,
92
(
12
), pp.
381S
389S
.
48.
Liu
,
Z. M.
, and
Wu
,
C. S.
,
2013
, “
Visualization of Dynamic Keyhole Behavior in Waveform-Controlled Plasma Arc Welding
,”
Weld. World
,
57
(
5
), pp.
719
725
. 10.1007/s40194-013-0072-0
49.
Liu
,
Z. M.
,
Wu
,
C. S.
, and
Chen
,
M. A.
,
2012
, “
Visualizing the Influence of the Process Parameters on the Keyhole Dimensions in Plasma Arc Welding
,”
Meas. Sci. Technol.
,
23
(
10
), p.
105603
. 10.1088/0957-0233/23/10/105603
50.
Chandrasekhar
,
N.
, and
Vasudevan
,
M.
,
2010
, “
Intelligent Modeling for Optimization of A-TIG Welding Process
,”
Mater. Manuf. Processes
,
25
(
11
), pp.
1341
1350
,
Article Number: PII 931352672
. 10.1080/10426914.2010.529584
51.
Sharma
,
P.
, and
Dwivedi
,
D. K.
,
2019
, “
A-TIG Welding of Dissimilar P92 Steel and 304H Austenitic Stainless Steel: Mechanisms, Microstructure and Mechanical Properties
,”
J. Manuf. Process.
,
44
, pp.
166
178
. 10.1016/j.jmapro.2019.06.003
52.
Pandey
,
C.
,
Mahapatra
,
M. M.
,
Kumar
,
P.
, and
Saini
,
N.
,
2018
, “
Dissimilar Joining of CSEF Steels Using Autogenous Tungsten-Inert Gas Welding and Gas Tungsten Arc Welding and Their Effect on Delta-Ferrite Evolution and Mechanical Properties
,”
J. Manuf. Process.
,
31
, pp.
247
259
. 10.1016/j.jmapro.2017.11.020
53.
Vidyarthy
,
R. S.
, and
Dwivedi
,
D. K.
,
2018
, “
Microstructural and Mechanical Properties Assessment of the P91 A-TIG Weld Joints
,”
J. Manuf. Process.
,
31
, pp.
523
535
. 10.1016/j.jmapro.2017.12.012
54.
Vora
,
J. J.
, and
Badheka
,
V. J.
,
2017
, “
Experimental Investigation on Microstructure and Mechanical Properties of Activated TIG Welded Reduced Activation Ferritic/Martensitic Steel Joints
,”
J. Manuf. Process.
,
25
, pp.
85
93
. 10.1016/j.jmapro.2016.11.007
55.
Arivazhagan
,
B.
, and
Vasudevan
,
M.
,
2015
, “
Studies on A-TIG Welding of 2.25Cr-1Mo (P22) Steel
,”
J. Manuf. Process.
,
18
, pp.
55
59
. 10.1016/j.jmapro.2014.12.003
56.
Gu
,
Y.
,
Deng
,
Z.
,
Shi
,
Y.
,
Li
,
G.
, and
Zhang
,
G.
,
2019
, “
Process and Performance of Cu/W Dissimilar Metal Welded by A-TIG Arc Spot Welding
,”
Rare Metal Mater. Eng.
,
48
(
3
), pp.
947
952
.
57.
Li
,
C.
,
Shi
,
Y.
,
Gu
,
Y.
, and
Yang
,
F.
,
2017
, “
Effect of Oxide on Surface Tension of Molten Metal
,”
RSC Adv.
,
7
(
85
), pp.
53941
53950
. 10.1039/C7RA11185A
58.
Mishra
,
R. S.
, and
Ma
,
Z. Y.
,
2005
, “
Friction Stir Welding and Processing
,”
Mater. Sci. Eng. R Rep.
,
50
(
1–2
), pp.
1
78
. 10.1016/j.mser.2005.07.001
59.
Nandan
,
R.
,
DebRoy
,
T.
, and
Bhadeshia
,
H. K. D. H.
,
2008
, “
Recent Advances in Friction-Stir Welding—Process, Weldment Structure and Properties
,”
Prog. Mater. Sci.
,
53
(
6
), pp.
980
1023
. 10.1016/j.pmatsci.2008.05.001
60.
Ma
,
Z. Y.
,
2008
, “
Friction Stir Processing Technology: A Review
,”
Metall. Mater. Trans. A
,
39A
(
3
), pp.
642
658
.
61.
Liu
,
F. C.
,
Hovanskib
,
Y.
,
Miles
,
M. P.
,
Sorensena
,
C. D.
, and
Nelson
,
T. W.
,
2018
, “
A Review of Friction Stir Welding of Steels: Tool, Material Flow, Microstructure, and Properties
,”
J. Mater. Sci. Technol.
,
34
(
1
), pp.
39
57
. 10.1016/j.jmst.2017.10.024
62.
Soundararajan
,
V.
,
Valant
,
M.
, and
Kovacevic
,
R.
,
2006
, “
Overview of R&D Work in Friction Stir Welding at SMU
,”
Metall. Mater. Eng.
,
12
(
4
), pp.
275
295
. 10.30544/381
63.
Arbegast
,
W. J.
,
2006
, “
Friction Stir Welding After a Decade of Development—Its Not Just Welding Anymore
,”
Weld. J.
,
85
(
3
), pp.
28
35
.
64.
Senthil
,
S. M.
,
Parameshwaran
,
R.
,
Ragu Nathan
,
S.
,
Bhuvanesh Kumar
,
M.
, and
Deepandurai
,
K.
,
2020
, “
A Multi-Objective Optimization of the Friction Stir Welding Process Using RSM-Based-Desirability Function Approach for Joining Aluminum Alloy 6063-T6 Pipes
,”
Struct. Multidiscip. Optim.
10.1007/s00158-020-02542-2
65.
Mehri
,
A.
,
Abdollah-zadeh
,
A.
,
Habibi
,
N.
,
Hajian
,
M.
, and
Wang
,
J. T.
,
2020
, “
The Effects of Rotational Speed on Microstructure and Mechanical Properties of Friction Stir-Welded 7075-T6 Thin Sheet
,”
J. Mater. Eng. Perform.
,
29
(
4
), pp.
2316
2323
. 10.1007/s11665-020-04733-w
66.
Robe
,
H.
,
Claudin
,
C.
,
Bergheau
,
J.-M.
, and
Feulvarch
,
E.
,
2019
, “
R-ALE Simulation of Heat Transfer During Friction Stir Welding of an AA2xxx/AA7xxx Joint on a Large Process Window
,”
Int. J. Mech. Sci.
,
155
, pp.
31
40
. 10.1016/j.ijmecsci.2019.02.029
67.
Zhang
,
J. L.
,
Chen
,
X.
,
Xia
,
D.
,
Huang
,
G.
,
Tang
,
A.
,
Jiang
,
B.
, and
Pan
,
F.
,
2020
, “
Improving Performance of Friction Stir Welded AZ31/AM60 Dissimilar Joint by Adjusting Texture Distribution and Microstructure
,”
Mater. Sci. Eng. A Struct. Mater.
,
778
, p.
139088
. 10.1016/j.msea.2020.139088
68.
Abolusoro
,
O. P.
,
Akinlabi
,
E. T.
, and
Kailas
,
S. V.
,
2020
, “
Tool Rotational Speed Impact on Temperature Variations, Mechanical Properties and Microstructure of Friction Stir Welding of Dissimilar High-Strength Aluminium Alloys
,”
J. Braz. Soc. Mech. Sci. Eng.
,
42
(
4
), p.
176
. 10.1007/s40430-020-2259-9
69.
McIntosh
,
C.
, and
Mendez
,
P. F.
,
2017
, “
Experimental Measurements of Fall Voltages in Gas Metal Arc Welding
,”
Weld. J.
,
96
(
4
), pp.
121S
132S
.
70.
Scotti
,
A.
, and
Monteiro
,
L. S.
,
2012
, “
A Methodology for Parameterization of the AC MIG/MAG Process
,”
Soldagem Inspecao
,
17
(
3
), pp.
271
277
. 10.1590/S0104-92242012000300011
71.
Arif
,
N.
, and
Chung
,
H.
,
2014
, “
Alternating Current-Gas Metal Arc Welding for Application to Thin Sheets
,”
J. Mater. Process. Technol.
,
214
(
9
), pp.
1828
1837
. 10.1016/j.jmatprotec.2014.03.034
72.
Arif
,
N.
, and
Chung
,
H.
,
2015
, “
Alternating Current-Gas Metal Arc Welding for Application to Thick Plates
,”
J. Mater. Process. Technol.
,
222
, pp.
75
83
. 10.1016/j.jmatprotec.2015.02.041
73.
Kiran
,
D. V.
,
Cheon
,
J.
,
Arif
,
N.
,
Chung
,
H.
, and
Na
,
S.-J.
,
2016
, “
Three-Dimensional Finite Element Modeling of Pulsed AC Gas Metal Arc Welding Process
,”
Int. J. Adv. Manuf. Technol.
,
86
(
5–8
), pp.
1453
1474
. 10.1007/s00170-015-8297-2
74.
Ikram
,
A.
, and
Chung
,
H.
,
2017
, “
The Effect of EN Ratio and Current on Microstructural and Mechanical Properties of Weld Joined by AC-GMAW on Square Groove Butt Joints
,”
Appl. Sci.
,
7
(
3
), p.
261
. 10.3390/app7030261
75.
Ikram
,
A.
,
Arif
,
N.
, and
Chung
,
H.
,
2016
, “
Design of an Induction System for Induction Assisted Alternating Current Gas Metal Arc Welding
,”
J. Mater. Process. Technol.
,
231
, pp.
162
170
. 10.1016/j.jmatprotec.2015.12.015
76.
Zhang
,
Y. M.
, and
Li
,
K. H.
,
2016
, “
Arc Welder and Related System
,” U.S. Patent No. 9,233,432.
77.
Zhang
,
Y. M.
, and
Chen
,
J. S.
,
2013
, “
Systems and Methods to Modify Gas Metal Arc Welding and Its Variants
,” U.S. Patent No. 8,563,896.
78.
Zhang
,
Y. M.
, and
Chen
,
J. S.
,
2012
, “
Systems and Methods to Modify Gas Metal Arc Welding and Its Variants
,” U.S. Patent No. 8,278,587.
79.
Li
,
K. H.
,
Chen
,
J. S.
, and
Zhang
,
Y. M.
,
2007
, “
Double-Electrode GMAW Process and Control
,”
Weld. J.
,
86
(
8
), p.
231S
.
80.
Zhang
,
Y. M.
,
Jiang
,
M.
, and
Lu
,
W.
,
2004
, “
Double Electrodes Improve GMAW Heat Input Control
,”
Weld. J.
,
83
(
11
), pp.
39
41
.
81.
Lu
,
Y.
,
Chen
,
S.
,
Shi
,
Y.
,
Li
,
X.
,
Chen
,
J.
,
Kvidahl
,
L.
, and
Zhang
,
Y. M.
,
2014
, “
Double-Electrode Arc Welding Process: Principle, Variants, Control and Developments
,”
J. Manuf. Process.
,
16
(
1
), pp.
93
108
. 10.1016/j.jmapro.2013.08.003
82.
Shi
,
Y.
,
Zhang
,
G.
,
Huang
,
Y.
,
Lu
,
L.
,
Huang
,
J.
, and
Shao
,
Y.
,
2014
, “
Pulsed Double-Electrode GMAW-Brazing for Joining of Aluminum to Steel
,”
Weld. J.
,
93
(
6
), pp.
216s
224s
.
83.
Shi
,
Y.
,
Shao
,
L.
,
Huang
,
J.
, and
Gu
,
Y.
,
2013
, “
Effects of Si and Mg Elements on the Microstructure of Aluminum-Steel Joints Produced by Pulsed DE-GMA Welding-Brazing
,”
Mater. Sci. Technol.
,
29
(
9
), pp.
1118
1124
. 10.1179/1743284713Y.0000000291
84.
Huang
,
J.
,
He
,
X.
,
Guo
,
Y.
,
Zhang
,
Z.
,
Shi
,
Y.
, and
Fan
,
D.
,
2017
, “
Joining of Aluminum Alloys to Galvanized Mild Steel by the Pulsed DE-GMAW With the Alternation of Droplet Transfer
,”
J. Manuf. Process.
,
25
, pp.
16
25
. 10.1016/j.jmapro.2016.10.003
85.
Zhou
,
X.
,
Zhang
,
G.
,
Shi
,
Y.
,
Zhu
,
M.
, and
Yang
,
F.
,
2017
, “
Microstructures and Mechanical Behavior of Aluminum-Copper Lap Joints
,”
Mater. Sci. Eng. A Struct. Mater.
,
705
, pp.
105
113
. 10.1016/j.msea.2017.08.056
86.
Yang
,
D.
,
Wang
,
G.
, and
Zhang
,
G.
,
2017
, “
A Comparative Study of GMAW- and DE-GMAW-Based Additive Manufacturing Techniques: Thermal Behavior of the Deposition Process for Thin-Walled Parts
,”
Int. J. Adv. Manuf. Technol.
,
91
(
5–8
), pp.
2175
2184
. 10.1007/s00170-016-9898-0
87.
Yang
,
D.
, and
Zhang
,
G.
,
2017
, “
Deposition Time and Thermal Cycles of Fabricating Thin-Wall Steel Parts by Double Electrode GMAW Based Additive Manufacturing
,”
2016 International Conference on Biomaterials, Nanomaterials and Composite Materials (CBNCM 2016) Book Series: MATEC Web of Conferences 88: 01007
,
Chengdu, China
,
Nov. 4–6
.
88.
Yang
,
D.
,
He
,
C.
, and
Zhang
,
G.
,
2016
, “
Forming Characteristics of Thin-Wall Steel Parts by Double Electrode GMAW Based Additive Manufacturing
,”
J. Mater. Process. Technol.
,
227
, pp.
153
160
. 10.1016/j.jmatprotec.2015.08.021
89.
Lu
,
Y.
,
Zhang
,
Y.
, and
Kvidahl
,
L.
,
2013
, “
Heat Input Reduction in Fillet Welding Using Bypass and Gap
,”
Weld. J.
,
92
(
12
), pp.
390s
400s
.
90.
Li
,
K. H.
,
Zhang
,
Y. M.
,
Xu
,
P.
, and
Yang
,
F. Q.
,
2008
, “
High-Strength Steel Welding With Consumable Double-Electrode Gas Metal Arc Welding
,”
Weld. J.
,
87
(
3
), pp.
57s
64s
.
91.
Li
,
K.
, and
Zhang
,
Y. M.
,
2008
, “
Consumable Double-Electrode GMAW Part II: Monitoring, Modeling, and Control
,”
Weld. J.
,
87
(
2
), pp.
44s
50s
.
92.
Li
,
K.
, and
Zhang
,
Y. M.
,
2008
, “
Consumable Double-Electrode GMAW Part I: The Process
,”
Weld. J.
,
87
(
1
), pp.
11s
17s
.
93.
Shi
,
Y.
,
Liu
,
X.
,
Zhang
,
Y.
, and
Johnson
,
M.
,
2008
, “
Analysis of Metal Transfer and Correlated Influences in Dual-Bypass GMAW of Aluminum
,”
Weld. J.
,
87
(
9
), pp.
229s
236s
.
94.
Li
,
K.
, and
Zhang
,
Y. M.
,
2007
, “
Metal Transfer in Double-Electrode Gas Metal Arc Welding
,”
ASME J. Manuf. Sci. Eng.
,
129
(
6
), pp.
991
999
. 10.1115/1.2769729
95.
Lu
,
Y.
,
Chen
,
J.
, and
Zhang
,
Y.
,
2015
, “
Dynamic Model of Consumable Double-Electrode Submerged Arc Welding Process
,”
ASME J. Manuf. Sci. Eng.
,
137
(
2
), p.
021001
. 10.1115/1.4025580
96.
Lu
,
Y.
,
Chen
,
J. S.
,
Zhang
,
Y. M.
, and
Kvidahl
,
L.
,
2014
, “
Predictive Control Based Double-Electrode Submerged Arc Welding for Fillet Joints
,”
J. Manuf. Process.
,
16
(
4
), pp.
415
426
. 10.1016/j.jmapro.2014.05.001
97.
Li
,
K.
, and
Zhang
,
Y.
,
2010
, “
Interval Model Control of Consumable Double-Electrode Gas Metal Arc Welding Process
,”
IEEE Trans. Autom. Sci. Eng.
,
7
(
4
), pp.
826
839
. 10.1109/TASE.2009.2032156
98.
ESAB
.
THE ICE ADVANTAGE
. https://www.esab.ca/ca/en/automation/process-solutions/saw/saw-ice/index.cfm, Accessed August 16, 2020.
99.
Parks
,
J. M.
, and
Stava
,
E. K.
,
1991
,
Apparatus and Method of Short Circuiting Arc Welding
, U.S. Patent #5,003,154.
100.
Stava
,
E. K.
,
1992
,
System and Method of Short Circuiting Arc Welding
, U.S. Patent #5,148,001.
101.
Stava
,
E. K.
,
1993
, “
A New, Low-Spatter Arc Welding Machine
,”
Weld. J.
,
72
(
1
), pp.
25
29
.
102.
Pickin
,
C. G.
,
Williams
,
S. W.
, and
Lunt
,
M.
,
2011
, “
Characterisation of the Cold Metal Transfer (CMT) Process and Its Application for Low Dilution Cladding
,”
J. Mater. Process. Technol.
,
211
(
3
), pp.
496
502
. 10.1016/j.jmatprotec.2010.11.005
103.
Feng
,
J.
,
Zhang
,
H.
, and
He
,
P.
,
2009
, “
The CMT Short-Circuiting Metal Transfer Process and Its Use in Thin Aluminium Sheets Welding
,”
Mater. Des.
,
30
(
5
), pp.
1850
1852
. 10.1016/j.matdes.2008.07.015
104.
Silwal
,
B.
,
Walker
,
J.
, and
West
,
D.
,
2019
, “
Hot-Wire GTAW Cladding: Inconel 625 on 347 Stainless Steel
,”
Int. J. Adv. Manuf. Technol.
,
102
(
9–12
), pp.
3839
3848
. 10.1007/s00170-019-03448-0
105.
Oreper
,
G. M.
,
Szekely
,
J.
, and
Eager
,
T. W.
,
1986
, “
The Role of Transient Convection in the Melting and Solidification in Arc Weldpools
,”
Metall. Trans. B
,
17B
(
4
), pp.
735
744
. 10.1007/BF02657135
106.
Zhang
,
W.
,
Kim
,
C.-H.
, and
DebRoy
,
T.
,
2004
, “
Heat and Fluid Flow in Complex Joints During Gas Metal Arc Welding—Part II: Application to Fillet Welding of Mild Steel
,”
J. Appl. Phys.
,
95
(
9
), pp.
5220
5229
. 10.1063/1.1699486
107.
Chen
,
X.
,
Mu
,
Z.
,
Hu
,
R.
,
Liang
,
L.
,
Murphy
,
A. B.
, and
Pang
,
S.
,
2019
, “
A Unified Model for Coupling Mesoscopic Dynamics of Keyhole, Metal Vapor, Arc Plasma, and Weld Pool in Laser-Arc Hybrid Welding
,”
J. Manuf. Process.
,
41
, pp.
119
134
. 10.1016/j.jmapro.2019.03.034
108.
DebRoy
,
T.
,
Wei
,
H. L.
,
Zuback
,
J. S.
,
Mukherjee
,
T.
,
Elmer
,
J. W.
,
Milewski
,
J. O.
,
Beese
,
A. M.
,
Wilson-Heid
,
A.
,
De
,
A.
, and
Zhang
,
W.
,
2018
, “
Additive Manufacturing of Metallic Components—Process, Structure and Properties
,”
Prog. Mater. Sci.
,
92
, pp.
112
224
. 10.1016/j.pmatsci.2017.10.001
109.
Cook
,
P. S.
, and
Murphy
,
A. B.
,
2020
, “
Simulation of Melt Pool Behaviour During Additive Manufacturing: Underlying Physics and Progress
,”
Addit. Manuf.
,
31
, p.
100909
. 10.1016/j.addma.2019.100909
110.
Goldak
,
J. A.
, and
Akhlaghi
,
M.
,
2005
,
Computational Welding Mechanics
,
Springer
,
New York
.
111.
Svensson
,
L.
,
Gretoft
,
B.
, and
Bhadeshia
,
H.
,
1986
, “
An Analysis of Cooling Curves From the Fusion Zone of Steel Weld Deposits
,”
Scand. J. Metall.
,
15
(
2
), p.
e103
.
112.
Arrizubieta
,
J. I.
,
Lamikiz
,
A.
,
Klocke
,
F.
,
Martínez
,
S.
,
Arntz
,
K.
, and
Ukar
,
E.
,
2017
, “
Evaluation of the Relevance of Melt Pool Dynamics in Laser Material Deposition Process Modeling
,”
Int. J. Heat Mass. Tran.
,
115
(
Part A
), pp.
80
91
. 10.1016/j.ijheatmasstransfer.2017.07.011
113.
Zhang
,
W.
,
Roy
,
G. G.
,
Elmer
,
J. W.
, and
DebRoy
,
T.
,
2003
, “
Modeling of Heat Transfer and Fluid Flow During Gas Tungsten Arc Spot Welding of Low Carbon Steel
,”
J. Appl. Phys.
,
93
(
5
), pp.
3022
. 10.1063/1.1540744
114.
Gao
,
X. S.
,
Wu
,
C. S.
,
Goecke
,
S. F.
, and
Kügler
,
H.
,
2017
, “
Numerical Simulation of Temperature Field, Fluid Flow and Weld Bead Formation in Oscillating Single Mode Laser-GMA Hybrid Welding
,”
J. Mater. Process. Technol.
,
242
(
5
), pp.
147
159
. 10.1016/j.jmatprotec.2016.11.028
115.
Youngs
,
D. L.
,
1982
, “Time-Dependent Multi-Material Flow With Large Fluid Distortion,”
Numerical Methods for Fluid Dynamics
,
K. W.
Morton
, and
M. J.
Baines
, eds.,
Academic Press
,
Reading, UK
.
116.
Sahoo
,
P.
,
DebRoy
,
T.
, and
McNallan
,
M.
,
1988
, “
Surface Tension of Binary Metal—Surface Active Solute Systems Under Conditions Relevant to Welding Metallurgy
,”
Metall Trans B
,
19
(
3
), pp.
483
491
. 10.1007/bf02657748
117.
Simonds
,
B. J.
,
Sowards
,
J. W.
,
Hadler
,
J.
,
Pfeif
,
E.
,
Wilthan
,
B.
,
Tanner
,
J.
,
Harris
,
C.
,
Williams
,
P. A.
, and
Lehman
,
J.
,
2018
, “
Dynamic and Absolute Measurements of Laser Coupling Efficiency During Laser Spot Welds
,”
Proc. CIRP
,
74
, pp.
632
635
. 10.1016/j.procir.2018.08.065
118.
Bayat
,
M.
,
Mohanty
,
S.
, and
Hattel
,
J. H.
,
2019
, “
Multiphysics Modelling of Lack-of-Fusion Voids Formation and Evolution in IN718 Made by Multi-Track/Multi-Layer L-PBF
,”
Int. J. Heat Mass Transfer
,
139
, pp.
95
114
. 10.1016/j.ijheatmasstransfer.2019.05.003
119.
Zhang
,
L. J.
,
Zhang
,
J. X.
,
Gumenyuk
,
A.
,
Rethmeier
,
M.
, and
Na
,
S. J.
,
2014
, “
Numerical Simulation of Full Penetration Laser Welding of Thick Steel Plate With High Power High Brightness Laser
,”
J. Mater. Process. Technol.
,
214
, pp.
1710
1720
. 10.1016/j.jmatprotec.2014.03.016
120.
Kaplan
,
A.
,
1994
, “
A Model of Deep Penetration Laser Welding Based on Calculation of the Keyhole Profile
,”
J. Phys. D Appl. Phys.
,
27
(
9
), pp.
1805
1814
. 10.1088/0022-3727/27/9/002
121.
Cho
,
J. H.
, and
Na
,
S. J.
,
2009
, “
Three-Dimensional Analysis of Molten Pool in GMA-Laser Hybrid Welding
,”
Weld. J.
,
88
(
2
), pp.
35
43
.
122.
Guerdoux
,
S.
, and
Fourment
,
L.
,
2009
, “
A 3D Numerical Simulation of Different Phases of Friction Stir Welding
,”
Model. Simul. Mater. Sci.
,
17
(
7
), pp.
1
32
. 10.1088/0965-0393/17/7/075001
123.
Ulysse
,
P.
,
2002
, “
Three-Dimensional Modeling of the Friction Stir-Welding Process
,”
Int. J. Mach. Tool Manuf.
,
42
(
14
), pp.
1549
1557
. 10.1016/S0890-6955(02)00114-1
124.
Colegrove
,
P. A.
, and
Shercliff
,
H. R.
,
2004
, “
Development of Trivex Friction Stir Welding Tool Part 2—Three-dimensional Flow Modelling
,”
Sci. Technol. Weld. Joi.
,
9
(
4
), pp.
352
361
. 10.1179/136217104225021661
125.
Yu
,
Z.
,
Zhang
,
W.
,
Choo
,
H.
, and
Feng
,
Z.
,
2012
, “
Transient Heat and Material Flow Modeling of Friction Stir Processing of Magnesium Alloy Using Threaded Tool
,”
Metall. Mat. Trans. A
,
43
(
2
), pp.
724
737
. 10.1007/s11661-011-0862-1
126.
De
,
A.
,
Bhadeshia
,
H. K. D. H.
, and
DebRoy
,
T.
,
2014
, “
Friction Stir Welding of Mild Steel: Tool Durability and Steel Microstructure
,”
Mater. Sci. Technol.
,
30
(
9
), pp.
1050
1056
. 10.1179/1743284714Y.0000000534
127.
Brust
,
F. W.
,
Hill
,
M. R.
, and
Yang
,
Y. P.
,
2018
,
Welding Handbook
, 10th ed., Vol.
1
,
American Welding Society
,
Miami, FL
.
128.
Brust
,
F. W.
,
Dodds
,
R. H.
,
Hobbs
,
J.
,
Stoltz
,
B.
, and
Wells
,
D.
,
2019
, “
Weld Residual Stress and Fracture Behavior of NASA Layered Pressure Vessels
,”
Proceedings of the ASME 2019 Pressure Vessels & Piping Conference, PVP2019-94021
,
July 14−19
,
San Antonio, TX
.
129.
Dong
,
P.
, and
Brust
,
F. W.
,
2000
, “
Welding Residual Stresses and Effects on Fracture in Pressure Vessel and Piping Components: A Millennium Review and Beyond
,”
J. Pressure Vessel Technol.
,
122
(
3
), pp.
329
338
. 10.1115/1.556189
130.
Feng
,
Z.
,
2005
,
Processes and Mechanisms of Welding Residual Stress and Distortion
,
Woodhead Publishing
,
Cambridge, UK
.
131.
Michaleris
,
P.
,
2011
,
Minimization of Welding Distortion and Buckling. Modelling and Implementation
,
Woodhead Publishing
,
Cambridge, UK
.
132.
Yang
,
Y. P.
,
Brust
,
F. W.
,
Zhang
,
J.
,
Cao
,
Z.
,
Dong
,
Y.
,
Nanjundan
,
A.
,
Varol
,
I.
, and
Jutla
,
T.
,
2000
, “
Weld Modeling Procedures Development of Lap Joint
,”
International Conference on Computer Engineering and Science, in Advances in Computational Engineering & Sciences
,
S. N.
Atluri
and
F. W.
Brust
, eds.,
Los Angeles, CA
,
Aug. 21−25
,
Tech Science Press
, pp.
708
713
.
133.
Yang
,
Y. P.
,
Brust
,
F. W.
,
Cao
,
Z.
,
Dong
,
Y.
, and
Nanjundan
,
A.
,
2002
, “
Welding-Induced Distortion Control Techniques in Heavy Industries
,”
Proceedings of the 6th International Conference on Trends in Welding Research, in Trends in Welding Research
,
Pine Mountain, GA
,
Apr. 15–19
, pp.
844
849
.
134.
Yang
,
Y. P.
,
Jamshidinia
,
M.
,
Boulware
,
P.
, and
Kelly
,
S.
,
2017
, “
Prediction of Microstructure, Residual Stress, and Deformation in Laser Powder Bed Fusion Process
,”
Comput. Mech.
,
61
(
5
), pp.
599
615
. 10.1007/s00466-017-1528-7
135.
Yang
,
Y. P.
,
Brust
,
F. W.
, and
Kennedy
,
J. C.
,
2002
, “
Lump-Pass Welding Simulation Technology Development for Shipbuilding Applications
,”
ASME Pressure Vessels and Piping Conference, in PVP2002-1105
,
Vancouver, British Columbia, Canada
,
Aug. 4–8
, pp.
47
54
.
136.
Sun
,
Y.
,
Li
,
D.
,
Zhang
,
Z.
,
Yan
,
D.
, and
Shi
,
Q.
,
2011
, “
Establishment of Traveling Temperature Function Method and Its Application on Welding Distortion Prediction of Cylindrical and Conical Aluminum Alloy Structures
,”
Acta Metall. Sin.
,
47
, pp.
1403
1407
. 10.3724/SP.J.1037.2011.00320
137.
Sun
,
Y.
,
Shi
,
Q.
,
Sun
,
K.
,
Chen
,
G.
, and
Meng
,
L.
,
2012
, “
Process Optimization to Control Welding Distortion of High Speed Train Roof by High Efficiency Numerical Simulation
,”
Proceeding of the 9th International Conference on Trends in Welding Research
,
Chicago, IL
,
June 4−8
, pp.
401
407
.
138.
Ueda
,
Y.
, and
Yuan
,
M. G.
,
1993
, “
Prediction of Residual Stress in Butt Welded Plates Using Inherent Strain
,”
ASME J. Eng. Mater. Technol.
,
115
(
4
), pp.
417
423
. 10.1115/1.2904240
139.
Wang
,
J.
,
Yuan
,
H.
,
Ma
,
N.
, and
Murakawa
,
H.
,
2016
, “
Recent Research on Welding Distortion Prediction in Thin Plate Fabrication by Means of Elastic FE Computation
,”
Mar. Struct.
,
47
, pp.
42
59
. 10.1016/j.marstruc.2016.02.004
140.
Wang
,
J.
,
Yi
,
B.
, and
Zhou
,
H.
,
2018
, “
Framework of Computational Approach Based on Inherent Deformation for Welding Buckling Investigation During Fabrication of Lightweight Ship Panel
,”
Ocean Eng.
,
157
, pp.
202
210
. 10.1016/j.oceaneng.2018.03.057
141.
Zhou
,
H.
, and
Wang
,
J.
,
2018
, “
Accurate FE Computation for Out-of-Plane Welding Distortion Prediction of Fillet Welding With Considering Self-Constraint
,”
J. Ship Prod. Des.
,
35
(
4
), pp.
317
327
. 10.5957/JSPD.03180006
142.
Yang
,
Y. P.
, and
Athreya
,
B. P.
,
2012
,
A Local-to-Global Assembling Method to Predict Distortion
,
AWS Professional Program in FABTECH Show
,
Las Vegas, NV
.
143.
Yang
,
Y. P.
,
Castner
,
H.
, and
Kapustka
,
N.
,
2011
, “
Development of Distortion Modeling Methods for Large Welded Structures
,”
Trans. Soc. Naval Architects Mar. Eng.
,
119
, pp.
645
653
.
144.
Yang
,
Y. P.
, and
Athreya
,
B. P.
,
2013
, “
An Improved Plasticity-Based Distortion Analysis Method for Large Welded Structures
,”
J. Mater. Eng. Perform.
,
22
(
5
), pp.
1233
1241
. 10.1007/s11665-012-0420-z
145.
Yang
,
Y. P.
,
Zhang
,
W.
,
Gan
,
W.
,
Khurana
,
S.
,
Xu
,
J.
, and
Babu
,
S.
,
2008
, “
Online Software Tool for Predicting Weld Residual Stress and Distortion
,”
Proceedings of 2008 ASME Pressure Vessels and Piping Division Conference
,
PVP2008-61123
, Vol.
6
:
279
288
,
Chicago, IL
.
146.
Yang
,
Y. P.
,
Zhang
,
W.
,
Bohr
,
J.
, and
Kimchi
,
M.
,
2009
, “
Development of Online Weld Modeling Tool for Automotive Applications
,”
Proceeding of International Automotive Body Congress (IABC)
,
Nov. 4−5
,
Troy, MI
.
147.
Zhang
,
W.
, and
Yang
,
Y. P.
,
2009
, “
Development and Application of On-Line Weld Modeling Tool
,”
Weld. World
,
53
(
1/2
), pp.
67
75
. 10.1007/BF03266693
148.
Anthony
,
B. M.
,
Nguyen
,
V.
,
Feng
,
Y.
,
David
,
G. T.
, and
Dayalan
,
G.
,
2017
, “
A Desktop Computer Model of the Arc, Weld Pool and Workpiece in Metal Inert Gas Welding
,”
Appl. Math. Model.
,
44
, pp.
91
106
. 10.1016/j.apm.2017.01.033
149.
Goldak
,
J.
,
Charkravarti
,
A.
, and
Bibby
,
M.
,
1984
, “
New Finite Element Model for Welding Heat Sources
,”
Metall. Trans.
,
15B
, pp.
300
305
.
150.
Balasubramanian
,
K. R.
,
Suthakar
,
T.
,
Sankaranarayanasamy
,
K.
, and
Buvanashekaran
,
G.
,
2012
, “
Finite Element Analysis of Heat Distribution in Laser Beam Welding of AISI 304 Stainless Steel Sheet
,”
Int. J. Manuf. Res.
,
7
(
1
), pp.
42
58
. 10.1504/IJMR.2012.045243
151.
Li
,
P.
,
Fan
,
Y.
,
Zhang
,
C.
,
Zhu
,
Z.
,
Tian
,
W.
, and
Liu
,
A.
,
2018
, “
Research on Heat Source Model and Weld Profile for Fiber Laser Welding of A304 Stainless Steel Thin Sheet
,”
Adv. Mater. Sci. Eng.
,
2018
, p.
5895027
. 10.1155/2018/5895027
152.
Kik
,
T.
, and
Górka
,
J.
,
2019
, “
Numerical Simulations of Laser and Hybrid S700MC T-Joint Welding
,”
Materials (Basel)
,
12
(
3
), p.
516
. 10.3390/ma12030516
153.
Wu
,
C. S.
,
Wang
,
H. G.
, and
Zhang
,
Y. M.
,
2006
, “
A New Heat Source Model for Keyhole Plasma Arc Welding in FEM Analysis of the Temperature Profile
,”
Weld. J.
,
85
, pp.
284s
291s
.
154.
Yang
,
Y. P.
,
2015
, “
Developing Friction Stir Welding Process Model for ICME Application
,”
J. Mater. Eng. Perform.
,
24
(
1
), pp.
202
208
. 10.1007/s11665-014-1260-9
155.
Zhang
,
W.
,
Elmer
,
J. W.
, and
DebRoy
,
T.
,
2005
, “
Integrated Modeling of Thermal Cycles, Austenite Formation, Grain Growth and Decomposition in the Heat Affected Zone of Carbon Steel
,”
Sci. Technol. Weld. Joi.
,
10
(
5
), pp.
574
582
. 10.1179/174329305X48365
156.
Ion
,
J. C.
,
Easterling
,
K. E.
, and
Ashby
,
M. F.
,
1984
, “
A Second Report on Diagrams of Microstructure and Hardness for Heat-Affected Zones in Welds
,”
Acta Metall.
,
32
(
11
), pp.
1949
1962
. 10.1016/0001-6160(84)90176-7
157.
Kirkaldy
,
J. S.
, and
Venugopalan
,
D.
,
1983
, “
Prediction of Microstructure and Hardness Ability in Low Alloy Steels, Phase Transformation in Ferrous Alloys
,”
Proc. Int. Conf. 4–6
.
158.
Kasuya
,
T.
,
Yurioka
,
N.
, and
Okumura
,
M.
,
1995
, “
Methods for Predicting Maximum Hardness of Heat-Affected Zone and Selecting Necessary Preheat Temperature for Steel Welding
,”
Nippon Steel Tech. Rep.
,
4
, pp.
7
14
.
159.
Yu
,
L.
,
Nakabayashi
,
Y.
,
Sasa
,
M.
,
Itoh
,
S.
,
Kameyama
,
M.
,
Hirano
,
S.
,
Chigusa
,
N.
,
Saida
,
K.
,
Mochizuki
,
M.
, and
Nishimoto
,
K.
,
2011
, “
Neural Network Prediction of Hardness in HAZ of Temper Bead Welding Using the Proposed Thermal Cycle Tempering Parameter (TCTP)
,”
ISIJ Int.
,
51
(
9
), pp.
1506
1515
. 10.2355/isijinternational.51.1506
160.
Oates
,
W. R.
, and
Saitta
,
A. M.
,
1998
,
Welding Handbook, Vol. 4 (Materials and Applications—Part 2)
, 8th ed.,
American Welding Society
.
161.
Brust
,
F. W.
,
Dong
,
P.
, and
Zhang
,
J.
,
1997
, “A Constitutive Model for Welding Process Simulation Using Finite Element Methods,”
Advances in Computational Engineering Science
,
S. N.
Atluri
, and
G.
Yagawa
, eds.,
Tech Science Press
, pp.
51
56
.
162.
Yang
,
Y. P.
, and
Dong
,
P.
,
2012
, “
Buckling Distortions and Mitigation Techniques for Thin-Section Structures
,”
J. Mater. Eng. Perform.
,
21
(
2
), pp.
153
160
. 10.1007/s11665-011-9928-x
163.
Mullins
,
J.
, and
Gunnars
,
J.
,
2009
, “
Influence of Hardening Model on Weld Residual Stress Distribution
,”
Research Report of Inspecta Technology AB
,
Stockholm, Sweden
. https://www.osti.gov/etdeweb/servlets/purl/963513
164.
Payares-Asprino
,
M. C.
,
Katsumoto
,
H.
, and
Liu
,
S.
,
2008
, “
Effect of Martensite Start and Finish Temperature on Residual Stress Development in Structural Steel Welds
,”
Weld. J.
,
87
(
11
), pp.
279s
289s
.
165.
Yang
,
Y. P.
,
Dong
,
P.
, and
Zhang
,
J.
,
2000
, “
A Hot-Cracking Mitigation Technique for Welding High-Strength Aluminum Alloy
,”
Weld. J.
,
79
(
1
), pp.
9s
17s
.
166.
Li
,
T.
,
Shi
,
Q.
, and
Li
,
H. K.
,
2007
, “
Residual Stresses Simulation for Friction Stir Welded Joint
,”
Sci. Technol. Weld. Joi.
,
12
(
8
), pp.
664
670
. 10.1179/174329307X236832
167.
Yan
,
D.
,
Shi
,
Q.
, and
Wu
,
A.
,
2009
, “
Numerical Analysis on the Functions of Stir Tool’s Mechanical Loads During Friction Stir Welding
,”
Acta Metall. Sin.
,
45
, pp.
994
999
.
168.
Gou
,
G.
,
Yang
,
Y. P.
, and
Chen
,
H.
,
2014
, “
An ICME Approach for Optimizing Thin Welded Structure Design
,”
Engineering
,
6
(
13
), pp.
936
947
. 10.4236/eng.2014.613085
169.
Yang
,
Y. P.
, and
Gould
,
J.
,
2014
, “
ICME Application in Designing Welded Structures
,”
Thermal Process Modeling: Proceedings From the Fifth International Conference on Thermal Process Modeling and Computer Simulation
,
Orlando, FL
,
June 16–18
, pp.
209
216
.
170.
Deng
,
D.
,
2009
, “
FEM Prediction of Welding Residual Stress and Distortion in Carbon Steel Considering Phase Transformation Effects
,”
Mater. Des.
,
30
(
2
), pp.
359
366
. 10.1016/j.matdes.2008.04.052
171.
Zhou
,
H.
,
Zhang
,
Q.
,
Yi
,
B.
, and
Wang
,
J.
,
2020
, “
Hardness Prediction Based on Microstructure Evolution and Residual Stress Evaluation During High Tensile Thick Plate Butt Welding
,”
Int. J. Naval Arch. Ocean Eng.
,
12
, pp.
146
156
. 10.1016/j.ijnaoe.2019.09.004
172.
Brust
,
F. W.
, and
Yang
,
Y. P.
,
2002
, “
Weld Residual Stresses and Cracking in Bimetallic Hot Leg Nuclear Weld
,”
ASME Pressure Vessels and Piping Conference
,
Aug. 4−8, 2002
,
Vancouver, British Columbia, Canada
.
173.
Yang
,
Y. P.
,
Babu
,
S.
,
Vaze
,
S.
,
Kikel
,
J.
, and
Dewees
,
D.
,
2008
, “
Crack Mitigation During Buttering and Cladding of A Low Alloy Steel Pipe
,”
Proceedings of the 8th International Conference on Trends in Welding Research
,
June 2–6, 2008
,
Pine Mountain, GA
.
174.
Yang
,
Y. P.
, and
Babu
,
S. S.
,
2010
, “
An Integrated Model to Simulate Laser Cladding Manufacturing Process for Engine Repair Applications
,”
Weld. World
,
54
(
9–10
), pp.
r298
r307
. 10.1007/BF03266743
175.
Yang
,
Y. P.
,
Brust
,
F. W.
,
Fzelio
,
A.
, and
McPherson
,
N.
,
2004
, “
Weld Modeling of Thin Structures With VFT Software
,”
ASME Pressure Vessels and Piping Conference
,
July 25−29, 2004
,
San Diego, CA
.
176.
Yang
,
Y. P.
,
Brust
,
F. W.
, and
Cao
,
Z.
,
2003
, “
Virtual Fabrication Technology Weld Modeling Tool and Its Applications in Distortion Predictions
,”
ASME Pressure Vessels and Piping Conference
,
July 20−24, 2003
,
Cleveland, OH
.
177.
Yang
,
Y. P.
, and
Mohr
,
W. C.
,
2015
, “
Finite Element Creep-Fatigue Analysis of a Welded Furnace Roll for Identifying Failure Root Cause
,”
J. Mater. Eng. Perform.
,
24
(
11
), pp.
4388
4399
. 10.1007/s11665-015-1746-0
178.
Yang
,
Y. P.
, and
Mohr
,
W. C.
,
2016
, “
Multiphysics Modeling of a Welded Furnace Roll for Improving Creep-Fatigue Life
,”
Weld. J.
,
95
(
11
), pp.
431s
441s
.
179.
Huang
,
T. D.
,
Rucker
,
H. J.
, and
Yang
,
Y. P.
,
2019
, “
An ICME Modeling Application for the Optimization of Tie-Down Weld Sequence in Ship Production
,”
J. Ship Prod. Des.
,
35
(
2
), pp.
190
197
. 10.5957/JSPD.06180021
180.
Yang
,
Y. P.
,
Dull
,
R.
,
Conrardy
,
C.
,
Porter
,
N.
,
Dong
,
P.
, and
Huang
,
T. D.
,
2008
, “
Transient Thermal Tensioning and Numerical Modeling of Thin Steel Ship Panel Structures
,”
J. Ship Prod.
,
24
(
1
), pp.
37
49
. 10.21236/ada495201
181.
Nagarajan
,
S.
,
Banerjee
,
P.
,
Chen
,
W. H.
, and
Chin
,
B. A.
, “
Control of the Welding Process Using Infrared-Sensors
,”
IEEE Trans. Rob. Autom.
,
8
(
1
), pp.
86
93
. 10.1109/70.127242
182.
Sreedhar
,
U.
,
Krishnamurthy
,
C. V.
,
Balasubramaniam
,
K.
,
Raghupathy
,
V. D.
, and
Ravisankar
,
S.
,
2012
, “
Automatic Defect Identification Using Thermal Image Analysis for Online Weld Quality Monitoring
,”
J. Mater. Process. Technol.
,
212
(
7
), pp.
1557
1566
. 10.1016/j.jmatprotec.2012.03.002
183.
Xiao
,
X.
,
Liu
,
X.
,
Cheng
,
M.
, and
Song
,
L.
,
2020
, “
Towards Monitoring Laser Welding Process via a Coaxial Pyrometer
,”
J. Mater. Process. Technol.
,
277
, p.
116409
. 10.1016/j.jmatprotec.2019.116409
184.
Wu
,
S. J.
,
Gao
,
H. M.
,
Zhang
,
W.
, and
Zhang
,
Y. M.
,
2018
, “
Measurement of Calibrated Recursive Analytic in the Gas Tungsten Arc Weld Pool Model
,”
Weld. J.
,
97
(
4
), pp.
108
119
. 10.29391/2018.97.010
185.
Zhang
,
Y. M.
,
Wu
,
L.
,
Walcott
,
B. L.
, and
Chen
,
D. H.
,
1993
, “
Determining Joint Penetration in GTAW With Vision Sensing of Weld-Face Geometry
,”
Weld. J.
,
72
(
10
), pp.
463s
469s
.
186.
Doong
,
J. L.
,
Wu
,
C. S.
, and
Hwang
,
J. R.
,
1991
, “
Infrared Temperature Sensing of Laser-Welding
,”
Int. J. Mach. Tools Manuf.
,
31
(
4
), pp.
607
616
. 10.1016/0890-6955(91)90040-A
187.
LeCun
,
Y.
,
Bengio
,
Y.
, and
Hinton
,
G.
,
2015
, “
Deep Learning
,”
Nature
,
521
(
7553
), pp.
436
444
. 10.1038/nature14539
188.
Rawlings
,
J. B.
,
Mayne
,
D. Q.
, and
Diehl
,
M. M.
,
2018
,
Model Predictive Control: Theory, Computation, and Design
, 2nd ed.,
Nob Hill Publishing, LLC
,
Madison, WI
.
189.
Li
,
C.
,
2018
, “
Weld Penetration Identification Based on Convolutional Neural Network
,”
Ph.D. dissertation
,
University of Kentucky Department of Electrical and Computer Engineering
. https://uknowledge.uky.edu/cgi/viewcontent.cgi?article=1137&context=ece_etds
190.
Jiao
,
W.H.
,
Wang
,
Q.Y.
,
Cheng
,
Y.C.
, and
Zhang
,
Y.M.
,
2020
, “
End-to-End Prediction of Weld Penetration: A Deep Learning and Transfer Learning Based Method
,”
J. Manuf. Process.
10.1016/j.jmapro.2020.01.044
191.
Feng
,
Y.
,
Chen
,
Z.
,
Wang
,
D.
,
Chen
,
J.
, and
Feng
,
Z.
,
2020
, “
DeepWelding: A Deep Learning Enhanced Approach to GTAW Using Multisource Sensing Images
,”
IEEE Trans. Ind. Inform.
,
16
(
1
), pp.
465
474
. 10.1109/TII.2019.2937563
192.
Sassi
,
P.
,
Tripicchio
,
P.
, and
Avizzano
,
C. A.
,
2019
, “
A Smart Monitoring System for Automatic Welding Defect Detection
,”
IEEE Trans. Ind. Electron.
,
66
(
12
), pp.
9641
9650
. 10.1109/TIE.2019.2896165
193.
Zhang
,
Z.
,
Wen
,
G.
, and
Chen
,
S.
,
2019
, “
Weld Image Deep Learning-Based On-Line Defects Detection Using Convolutional Neural Networks for Al Alloy in Robotic Arc Welding
,”
J. Manuf. Process.
,
45
, pp.
208
216
. 10.1016/j.jmapro.2019.06.023
194.
Chen
,
C.-S.
,
2013
,
Linear Systems Theory and Design
, 4th ed.,
Oxford University Press
,
New York
.
195.
Agapakis
,
J. E.
,
Katz
,
J. M.
,
Koifman
,
M.
,
Epstein
,
G. N.
,
Friedman
,
J. M.
,
Eyring
,
D. O.
, and
Rutishauser
,
H. J.
,
1986
, “
Joint Tracking and Adaptive Robotic Welding Using Vision Sensing of the Weld Joint Geometry
,”
Weld. J.
,
65
(
11
), pp.
33
41
. 10.1117/12.937775
196.
Weglowski
,
M. S.
,
2008
, “
Modeling and Analysis of the Arc Light Spectrum in GMAW
,”
Weld. J.
,
87
(
8
), pp.
212S
218S
.
197.
Yu
,
J. Y.
,
Kim
,
J. I.
, and
Na
,
S. J.
,
2003
, “
Influence of Reflected Arc Light on Vision Sensors for Automatic GTAW Systems
,”
Weld. J.
,
82
(
2
), pp.
36S
42S
.
198.
Gao
,
X. D.
,
Mo
,
L.
,
Wen
,
O.
, and
Katayama
,
S.
,
2013
, “
Neural Network Model for Recognizing Joint Offset During Fiber Laser Welding
,”
Weld. J.
,
92
(
9
), pp.
251S
257S
.
199.
Xue
,
B.
,
Chang
,
B.
,
Peng
,
G.
,
Gao
,
Y.J.
,
Tian
,
Z.J.
,
Du
,
D.
, and
Wang
,
G.Q.
,
2019
, “
A Vision Based Detection Method for Narrow Butt Joints and a Robotic Seam Tracking System
,”
Sensors
,
19
(
5
), p.
1144
. 10.3390/s19051144
200.
Lei
,
T.
,
Wang
,
W.
,
Rong
,
Y.
,
Xiong
,
P.
, and
Huang
,
Y.
,
2020
, “
Cross-lines Laser Aided Machine Vision in Tube-to-Tubesheet Welding for Welding Height Control
,”
Opt. Laser Technol.
,
121
, p.
105796
. 10.1016/j.optlastec.2019.105796
201.
Na
,
S.-J.
,
2008
,
Real-Time Weld Process Monitoring
,
Y.
Zhang
, ed.,
Woodhead Publishing
,
Cambridge, UK
.
202.
Lu
,
W.
,
Zhang
,
Y. M.
, and
Emmerson
,
J.
,
2007
, “
Adaptive Non-Transferred Plasma Charge Sensor and Its Applications
,”
ASME J. Manuf. Sci. Eng.
,
129
(
1
), pp.
180
189
. 10.1115/1.2401627
203.
Zhang
,
Y. M.
,
Li
,
P. J.
, and
Zhang
,
S. B.
,
2002
, “
Apparatus, System, and Related Method for Sensing a Characteristic of a Workpiece in an Automated Process
,” U.S. Patent No. 6,437,281.
204.
Richardson
,
R.
, and
Gutow
,
D.
,
1983
, “
Coaxial Arc Weld Pool Viewing for Process Monitoring and Control
,”
Weld. J.
,
63
(
3
), pp.
43
50
.
205.
Węglowski
,
M. S.
,
2007
, “
Investigation on the Arc Light Spectrum in GTA Welding
,”
J. Achiev. Mater. Manuf. Eng.
,
20
, p.
519
522
.
206.
Li
,
P. J.
, and
Zhang
,
Y. M.
,
2000
, “
Analysis of an Arc Light Mechanism and Its Application in Sensing of the GTAW Process
,”
Weld. J.
,
79
(
9
), pp.
2525-s
.
207.
Kiddee
,
P.
,
Fang
,
Z.
, and
Tan
,
M.
,
2016
, “
An Automated Weld Seam Tracking System for Thick Plate Using Cross Mark Structured Light
,”
Int. J. Adv. Manuf. Technol.
,
87
(
9–12
), pp.
3589
3603
. 10.1007/s00170-016-8729-7
208.
Xu
,
P.
,
Xu
,
G.
,
Tang
,
X.
, and
Yao
,
S.
,
2008
, “
A Visual Seam Tracking System for Robotic Arc Welding
,”
Int. J. Adv. Manuf. Technol.
,
37
(
1–2
), pp.
70
75
. 10.1007/s00170-007-0939-6
209.
Xiong
,
J.
, and
Zou
,
S.
,
2019
, “
Active Vision Sensing and Feedback Control of Back Penetration for Thin Sheet Aluminum Alloy in Pulsed MIG Suspension Welding
,”
J. Process. Control
,
77
, pp.
89
96
. 10.1016/j.jprocont.2019.03.013
210.
Kovacevic
,
R.
,
Zhang
,
Y. M.
, and
Ruan
,
S.
,
1995
, “
Sensing and Control of Weld Pool Geometry for Automated GTA Welding
,”
ASME J. Manuf. Sci. Eng.
,
117
(
2
), pp.
210
222
. 10.1115/1.2803297
211.
Kovacevic
,
R.
, and
Zhang
,
Y. M.
,
1997
, “
Real-Time Image Processing for Monitoring of Free Weld Pool Surface
,”
ASME J. Manuf. Sci. Eng.
,
119
(2), pp.
161
169
. 10.1115/1.2831091
212.
Kovacevic
,
R.
,
Zhang
,
Y. M.
, and
Li
,
L.
,
1996
, “
Monitoring of Weld Joint Penetrations Based on Weld Pool Geometrical Appearance
,”
Weld. J.
,
75
(
10
), pp.
317s
329s
.
213.
Zhang
,
Y. M.
,
Kovacevic
,
R.
, and
Li
,
L.
,
1996
, “
Characterization and Real-Time Measurement of Geometrical Appearance of the Weld Pool
,”
Int. J. Mach. Tools Manuf.
,
36
(
7
), pp.
799
816
, 10.1016/0890-6955(95)00083-6
214.
Wu
,
C. S.
,
Wang
,
L.
,
Ren
,
W. J.
, and
Zhang
,
X. Y.
,
2014
, “
Plasma Arc Welding: Process, Sensing, Control and Modeling
,”
J. Manuf. Process.
,
16
(
1
), pp.
74
85
. 10.1016/j.jmapro.2013.06.004
215.
Zhang
,
Y. M.
,
Song
,
H. S.
, and
Saeed
,
G.
,
2006
, “
Observation of a Dynamic Specular Weld Pool Surface
,”
Meas. Sci. Technol.
,
17
(
6
), pp.
L9
L12
. 10.1088/0957-0233/17/6/L02
216.
Zhang
,
W.
,
Wang
,
X.
, and
Zhang
,
Y.
,
2013
, “
Analytical Real-Time Measurement of a Three-Dimensional Weld Pool Surface
,”
Meas. Sci. Technol.
,
24
(
11
), p.
115011
. 10.1088/0957-0233/24/11/115011
217.
Gao
,
X.
,
You
,
D.
, and
Katayama
,
S.
,
2012
, “
Seam Tracking Monitoring Based on Adaptive Kalman Filter Embedded Elman Neural Network During High-Power Fiber Laser Welding
,”
IEEE Trans. Ind. Electron.
,
59
(
11
), pp.
4315
4325
. 10.1109/TIE.2012.2193854
218.
Zhou
,
G.
,
Xu
,
G.
, and
Gu
,
X.
,
2016
, “
Research on Evaluating Laser Welding Quality Based on Two-Dimensional Array Ultrasonic Probe
,”
Int. J. Adv. Manuf. Technol.
,
84
(
5–8
), pp.
1717
1723
. 10.1007/s00170-015-8243-3
219.
Shao
,
W. J.
,
Huang
,
Y.
, and
Zhang
,
Y.
,
2018
, “
A Novel Weld Seam Detection Method for Space Weld Seam of Narrow Butt Joint in Laser Welding
,”
Opt. Laser Technol.
,
99
, pp.
39
51
. 10.1016/j.optlastec.2017.09.037
220.
Lee
,
S. K.
, and
Na
,
S. J.
,
2002
, “
A Study on Automatic Seam Tracking in Pulsed Laser Edge Welding by Using a Vision Sensor Without an Auxiliary Light Source
,”
J. Manuf. Syst.
,
21
(
4
), pp.
302
315
. 10.1016/S0278-6125(02)80169-8
221.
Eriksson
,
I.
,
Gren
,
P.
, and
Powell
,
J.
,
2010
, “
New High-Speed Photography Technique for Observation of Fluid Flow in Laser Welding
,”
Opt. Eng.
,
49
(
10
),
100503
. 10.1117/1.3502567
222.
Eriksson
,
I.
,
Powell
,
J.
, and
Kaplan
,
A. F. H.
,
2011
, “
Measurements of Fluid Flow on Keyhole Front During Laser Welding
,”
Sci. Technol. Weld. Joi.
,
16
(
7
), pp.
636
641
. 10.1179/1362171811Y.0000000050
223.
Zhang
,
Y. X.
,
Zhang
,
N. F.
,
You
,
D. Y.
,
Gao
,
X. D.
, and
Katayama
,
S. J.
,
2019
, “
High-Power Disk Laser Welding Statuses Monitoring Based on Analyses of Multiple-Sensor Signals
,”
J. Manuf. Process.
,
41
, pp.
221
230
. Na 12. 10.1016/j.jmapro.2019.03.028
224.
Ancona
,
A.
,
Spagnolo
,
V.
,
Lugarà
,
P. M.
, and
Ferrara
,
M.
,
2001
, “
Optical Sensor for Real-Time Monitoring of CO2 Laser Welding Process
,”
Appl. Opt.
,
40
(
33
), pp.
6019
6025
. 10.1364/AO.40.006019
225.
You
,
D. Y.
,
Gao
,
X. D.
, and
Katayama
,
S.
,
2015
, “
Review of Laser Welding Monitoring
,”
Sci. Technol. Weld. Joi.
,
19
(
3
), pp.
181
201
, 2014. 10.1179/1362171813Y.0000000180
226.
Mishra
,
D.
,
Roy
,
R. B.
,
Dutta
,
S.
,
Pal
,
S. K.
, and
Chakravarty
,
D.
,
2018
, “
A Review on Sensor Based Monitoring and Control of Friction Stir Welding Process and a Roadmap to Industry 4.0
,”
J. Manuf. Process.
,
36
, pp.
373
397
. 10.1016/j.jmapro.2018.10.016
227.
Fleming
,
P. A.
,
Hendricks
,
C. E.
,
Cook
,
G. E.
,
Wilkes
,
D. M.
,
Strauss
,
A. M.
, and
Lammlein
,
D. H.
,
2010
, “
Seam-Tracking for Friction Stir Welded Lap Joints
,”
J. Mater. Eng. Perform.
,
19
(
8
), pp.
1128
1132
. 10.1007/s11665-010-9593-5
228.
Su
,
H.
,
Wu
,
C. S.
,
Pittner
,
A.
, and
Rethmeier
,
M.
,
2013
, “
Simultaneous Measurement of Tool Torque, Traverse Force and Axial Force in Friction Stir Welding
,”
J. Manuf. Process.
,
15
(
4
), pp.
495
500
. 10.1016/j.jmapro.2013.09.001
229.
Mehta
,
M.
,
Chatterjee
,
K.
, and
De
,
A.
,
2013
, “
Monitoring Torque and Traverse Force in Friction Stir Welding From Input Electrical Signatures of Driving Motors
,”
Sci. Technol. Weld. Joi.
,
18
(
3
), pp.
191
197
. 10.1179/1362171812Y.0000000084
230.
Prater
,
T.
,
Gibson
,
B.
,
Cox
,
C.
,
Cook
,
G. E.
,
Strauss
,
A.
, and
Longhurst
,
W.
,
2015
, “
Evaluation of Torque as a Means of In-Process Sensing of Tool Wear in Friction Stir Welding of Metal Matrix Composites
,”
Ind. Rob. Int. J.
,
42
(
3
), pp.
192
199
. 10.1108/IR-01-2015-0007
231.
Fehrenbacher
,
A.
,
Schmale
,
J. R.
,
Zinn
,
M. R.
, and
Pfefferkorn
,
F. E.
,
2014
, “
Measurement of Tool-Workpiece Interface Temperature Distribution in Friction Stir Welding
,”
ASME J. Manuf. Sci. Eng.
,
136
(
2
), p.
021009
. 10.1115/1.4026115
232.
Bhat
,
N. N.
,
Kumari
,
K.
,
Dutta
,
S.
,
Pal
,
S. K.
, and
Pal
,
S.
,
2015
, “
Friction Stir Weld Classification by Applying Wavelet Analysis and Support Vector Machine on Weld Surface Images
,”
J. Manuf. Process.
,
20
(
Part 1
), pp.
274
281
. 10.1016/j.jmapro.2015.07.002
233.
Tarraf
,
J.
,
Mustapha
,
S.
,
Fakih
,
M. A.
,
Harb
,
M.
,
Wang
,
H.
,
Ayoub
,
G.
, and
Hamade
,
R.
,
2018
, “
Application of Ultrasonic Waves Towards the Inspection of Similar and Dissimilar Friction Stir Welded Joints
,”
J. Mater. Process. Technol.
,
255
, pp.
570
583
. 10.1016/j.jmatprotec.2018.01.006
234.
Wang
,
Y. S.
,
Gao
,
T.
,
Liu
,
D.
,
Sun
,
H.
Miao
,
B.
, and
Qing
,
X.
,
2020
, “
Propagation Characteristics of Ultrasonic Weld-Guided Waves in Friction Stir Welding Joint of Same Material
,”
Ultrasonics
,
102
, p.
106058
. 10.1016/j.ultras.2019.106058
235.
Zhang
,
Y. X.
,
You
,
D.
,
Gao
,
X.
,
Wang
,
C.
,
Li
,
Y.
, and
Gao
,
P. P.
,
2020
, “
Real-Time Monitoring of High-Power Disk Laser Welding Statuses Based on Deep Learning Framework
,”
J. Intell. Manuf.
,
31
(
4
), pp.
799
814
. 10.1007/s10845-019-01477-w
236.
Liang
,
R.
,
Yu
,
R.
,
Luo
,
Y.
, and
Zhang
,
Y. M.
,
2019
, “
Machine Learning of Weld Joint Penetration From Weld Pool Surface Using Support Vector Regression
,”
J. Manuf. Process.
,
41
, pp.
23
28
. 10.1016/j.jmapro.2019.01.039
237.
Atwya
,
M.
, and
Panoutsos
,
G.
,
2020
, “
Transient Thermography for Flaw Detection in Friction Stir Welding: A Machine Learning Approach
,”
IEEE Trans. Ind. Inform.
,
16
(
7
), pp.
4423
4435
. 10.1109/TII.2019.2948023
238.
Sudhagar
,
S.
,
Sakthivel
,
M.
, and
Ganeshkumar
,
P.
,
2019
, “
Monitoring of Friction Stir Welding Based on Vision System Coupled With Machine Learning Algorithm
,”
Measurement
,
144
, pp.
135
143
. 10.1016/j.measurement.2019.05.018
239.
Das
,
B.
,
Pal
,
S.
, and
Bag
,
S.
,
2017
, “
Torque Based Defect Detection and Weld Quality Modelling in Friction Stir Welding Process
,”
J. Manuf. Process.
,
27
, pp.
8
17
. 10.1016/j.jmapro.2017.03.012
240.
Li
,
X. R.
,
Zhang
,
Y. M.
, and
Kvidahl
,
L.
,
2013
, “
Penetration Depth Monitoring and Control in Submerged Arc Welding
,”
Weld. J.
,
92
(
2
), pp.
S48
S56
.
241.
Huang
,
Y.-W.
,
Tung
,
P.-C.
, and
Wu
,
C.-Y.
,
2007
, “
Tuning PID Control of an Automatic Arc Welding System Using a SMAW Process
,”
Int. J. Adv. Manuf. Technol.
,
34
(
1–2
), pp.
56
61
. 10.1007/s00170-006-0569-4
242.
Little
,
J.
, “
The Impact of Model-Based Design on Controls, Today and in the Future
,”
Plenary Speech, The 19th World Congress of the International Federation of Automatic Control (IFAC 2014)
,
Cape Town, South Africa
,
August 24–29, 2014
.
243.
Zhang
,
Y. M.
,
Kovacevic
,
R.
, and
Li
,
L.
,
1996
, “
Adaptive Control of Full Penetration Gas Tungsten Arc Welding
,”
IEEE Trans. Control Syst. Technol.
,
4
(
4
), pp.
394
403
. 10.1109/87.508887
244.
Zhang
,
Y. M.
, and
Kovacevic
,
R.
,
1998
, “
Neurofuzzy Model-Based Predictive Control of Weld Fusion Zone Geometry
,”
IEEE Trans. Fuzzy Syst.
,
6
(
3
), pp.
389
401
. 10.1109/91.705507
245.
Santos
,
T. O.
,
Caetano
,
R. B.
,
Lemos
,
J. M.
, and
Coito
,
F. J.
,
2000
, “
Multipredictive Adaptive Control of arc Welding Trailing Centerline Temperature
,”
IEEE Trans. Control Syst. Technol.
,
8
(
1
), pp.
159
169
. 10.1109/87.817701
246.
Tzafestas
,
S. G.
, and
Kyriannakis
,
E. J.
,
2000
, “
Regulation of GMA Welding Thermal Characteristics via a Hierarchical MIMO Predictive Control Scheme Assuring Stability
,”
IEEE Trans. Ind. Electron.
,
47
(
3
), pp.
668
678
. 10.1109/41.847907
247.
Liu
,
Y. K.
, and
Zhang
,
Y. M.
,
2014
, “
Model-Based Predictive Control of Weld Penetration in Gas Tungsten Arc Welding
,”
IEEE Trans. Control Syst. Technol.
,
22
(
3
), pp.
955
966
. 10.1109/TCST.2013.2266662
248.
Liu
,
Y.
, and
Zhang
,
Y.
,
2013
, “
Control of 3D Weld Pool Surface
,”
Control Eng. Pract.
,
21
(
11
), pp.
1469
1480
. 10.1016/j.conengprac.2013.06.019
249.
Anzehaee
,
M. M.
, and
Haeri
,
M.
,
2012
, “
A New Method to Control Heat and Mass Transfer to Work Piece in a GMAW Process
,”
J. Process Control
,
22
(
6
), pp.
1087
1102
. 10.1016/j.jprocont.2012.04.004
250.
Zou
,
S.
,
Wang
,
Z.
,
Hu
,
S.
,
Wang
,
W.
, and
Cao
,
Y.
, “
Control of Weld Penetration Depth Using Relative Fluctuation Coefficient as Feedback
,”
J. Intell. Manuf.
,
31
(
5
),
1203
1213
. 10.1007/s10845-019-01506-8
251.
Sartipizadeh
,
H.
, and
Haeri
,
M.
,
2018
, “
Control of Droplet Detachment Frequency in a GMAW Process by a Hybrid Model Predictive Control
,”
ASME J. Dyn. Syst. Meas. Control
,
140
(
11
), p.
111008
. 10.1115/1.4040251
252.
Taysom
,
B. S.
,
Sorensen
,
C. D.
, and
Hedengren
,
J. D.
,
2016
, “
Dynamic Modeling of Friction Stir Welding for Model Predictive Control
,”
J. Manuf. Process.
,
23
, pp.
165
174
. 10.1016/j.jmapro.2016.06.004
253.
Taysom
,
B. S.
,
Sorensen
,
C. D.
, and
Hedengren
,
J. D.
,
2017
, “
A Comparison of Model Predictive Control and PID Temperature Control in Friction Stir Welding
,”
J. Manuf. Process.
,
29
, pp.
232
241
. 10.1016/j.jmapro.2017.07.015
254.
Doumanidis
,
C. C.
, and
Hardt
,
D. E.
,
1991
, “
Multivariable Adaptive-Control of Thermal-Properties During Welding
,”
ASME J. Dyn. Syst. Meas. Control
,
113
(
1
), pp.
82
92
. 10.1115/1.2896364
255.
Suzuki
,
A.
,
Hardt
,
D. E.
, and
Valavani
,
L.
,
1991
, “
Application of Adaptive-Control Theory to Online GTA Weld Geometry Regulation
,”
ASME J. Dyn. Syst. Meas. Control
,
113
(
1
), pp.
93
103
. 10.1115/1.2896365
256.
Song
,
J. B.
, and
Hardt
,
D. E.
,
1994
, “
Dynamic Modeling and Adaptive-Control of the Gas Metal Arc-Welding Process
,”
ASME J. Dyn. Syst. Meas. Control
,
116
(
3
), pp.
405
413
. 10.1115/1.2899235
257.
Doumanidis
,
C. C.
,
1995
, “
Thermal Regulation in Multiple-Source Arc-Welding Involving Material Transformations
,”
Weld. J.
,
74
(
6
), pp.
S185
S194
.
258.
Doumanidis
,
C. C.
,
1994
, “
Modeling and Control of Timeshared and Scanned Torch Welding
,”
ASME J. Dyn. Syst. Meas. Control
,
116
(
3
), pp.
387
395
. 10.1115/1.2899233
259.
Kwon
,
W. H.
,
Choi
,
H.
,
Byun
,
D. G.
, and
Noh
,
S.
,
1992
, “
Recursive Solution of Generalized Predictive Control and Its Equivalence to Receding Horizon Tracking Control
,”
Automatica
,
28
(
6
), pp.
1235
1238
. 10.1016/0005-1098(92)90066-O
260.
Doumanidis
,
C.
, and
Kwak
,
Y. M.
,
2002
, “
Multivariable Adaptive Control of the Bead Profile Geometry in Gas Metal Arc Welding With Thermal Scanning
,”
Int. J. Press. Vessels Piping
,
79
(
4
), pp.
251
262
. 10.1016/S0308-0161(02)00024-8
261.
Wu
,
D.
,
Chen
,
H.
,
Huang
,
Y.
, and
Chen
,
S.
,
2019
, “
Online Monitoring and Model-Free Adaptive Control of Weld Penetration in VPPAW Based on Extreme Learning Machine
,”
IEEE Trans. Ind. Inform.
,
15
(
5
), pp.
2732
2740
. 10.1109/TII.2018.2870933
262.
Zhang
,
K.
,
Li
,
D. Y.
,
Gui
,
H.
, and
Li
,
Z. G.
,
2018
, “
Adaptive Control for Laser Welding With Filler Wire of Marine High Strength Steel With Tight Butt Joints for Large Structures
,”
J. Manuf. Process.
,
36
, pp.
434
441
. 10.1016/j.jmapro.2018.10.042
263.
Gibson
,
B.
,
Cook
,
G.
,
Prater
,
T.
,
Longhurst
,
W.
,
Strauss
,
A. M.
, and
Cox
,
C. D.
,
2011
, “
Adaptive Torque Control of Friction Stir Welding for the Purpose of Estimating Tool Wear
,”
Proc. Inst. Mech. Eng. B J. Eng. Manuf.
,
225
(
B8
), pp.
1293
1303
. 10.1177/2041297510393629
You do not currently have access to this content.