Abstract

Smart manufacturing concepts are being integrated into all areas of manufacturing industries, from the device level (e.g., intelligent sensors) to the efficient coordination of business units. Vital components of any manufacturing enterprise are the processes that transform raw materials into components, assemblies, and finally products. It is the manufacturing process where smart manufacturing is poised to make substantial impact through process control, i.e., the intelligent manipulation of process variables to increase operation productivity and part quality. This article discusses three areas of manufacturing process control: control-oriented modeling, sensing and monitoring, and the design and construction of controllers. The discussion will center around the following manufacturing processes: machining, grinding, forming, joining, and additive. While many other important processes exist, the discussions of control of these mechanical manufacturing processes will form a framework commonly applied to these processes and the discussion will form a framework to provide insights into the modeling, monitoring, and control of manufacturing processes more broadly. Conclusions from these discussions will be drawn, and future research directions in manufacturing process control will be provided. This article acknowledges the contributions of two of the pioneering researchers in this field, Dr. Yoram Koren and Dr. Galip Ulsoy, who have made seminal contributions in manufacturing process control and continued to build the body of knowledge over the course of many decades.

References

1.
Lipman
,
R. R.
,
Feeney
,
A. B.
,
Krima
,
S.
, and
Toussaint
,
M.
,
2020
, “Product Definitions for Smart Manufacturing,” https://www.nist.gov/programs-projects/product-definitions-smart-manufacturing, Accessed April 1, 2020.
2.
Kalpakjian
,
S.
,
1997
,
Manufacturing Processes for Engineering Materials
, 3rd ed.,
Addison Wesley Longman Inc.
,
Menlo Park, CA
.
3.
ASTM International
,
2012
, “
Standard Terminology for Additive Manufacturing Technologies
,”
ASTM International
,
West Conshohocken, PA
, Technical Report No. F2792-12a.
4.
Masory
,
O.
,
Koren
,
Y.
, and
Weill
,
R.
,
1980
, “
Adaptive Control for Turning
,”
Ann. CIRP
,
29
(
1
), pp.
281
284
. 10.1016/S0007-8506(07)61336-5
5.
Lauderbaugh
,
L.
, and
Ulsoy
,
A.
,
1988
, “
Dynamic Modeling for Control of the Milling Process
,”
ASME J. Eng. Ind.
,
110
(
4
), pp.
367
375
. 10.1115/1.3187896
6.
Ulsoy
,
A. G.
,
Koren
,
Y.
, and
Rasmussen
,
F.
,
1983
, “
Principal Developments in the Adaptive Control of Machine Tools
,”
ASME J. Dyn. Syst. Meas. Control
,
105
(
2
), pp.
107
112
. 10.1115/1.3149640
7.
Lauderbaugh
,
L.
, and
Ulsoy
,
A.
,
1989
, “
Model Reference Adaptive Force Control in Milling
,”
ASME J. Eng. Ind.
,
111
(
1
), pp.
13
21
. 10.1115/1.3188726
8.
Danai
,
K.
, and
Ulsoy
,
A. G.
,
1987
, “
A Dynamic State Model for On-Line Tool Wear Estimation in Turning
,”
ASME J. Eng. Ind.
,
109
(
4
), pp.
396
399
. 10.1115/1.3187145
9.
Danai
,
K.
, and
Ulsoy
,
A. G.
,
1987
, “
An Adaptive Observer for On-Line Tool Wear Estimation in Turning—Part I: Theory
,”
Mech. Syst. Sig. Process.
,
1
(
2
), pp.
211
225
. 10.1016/0888-3270(87)90072-0
10.
Danai
,
K.
, and
Ulsoy
,
A. G.
,
1987
, “
An Adaptive Observer for On-Line Tool Wear Estimation in Turning—Part II: Results
,”
Mech. Syst. Sig. Process.
,
1
(
2
), pp.
227
240
. 10.1016/0888-3270(87)90073-2
11.
Koren
,
Y.
,
Ko
,
T. R.
,
Ulsoy
,
A. G.
, and
Danai
,
K.
,
1991
, “
Flank Wear Estimation Under Varying Cutting Conditions
,”
ASME J. Dyn. Syst. Meas. Control
,
113
(
2
), pp.
300
307
. 10.1115/1.2896379
12.
Park
,
J. J.
, and
Ulsoy
,
A. G.
,
1992
, “
On-Line Tool Wear Estimation Using Force Measurement and a Nonlinear Observer
,”
ASME J. Dyn. Syst. Meas. Control
,
114
(
4
), pp.
666
672
. 10.1115/1.2897739
13.
Park
,
J. J.
, and
Ulsoy
,
A. G.
,
1993
, “
On-Line Flank Wear Estimation Using an Adaptive Observer and Computer Vision, Part I: Theory
,”
ASME J. Eng. Ind.
,
115
(
1
), pp.
30
36
. 10.1115/1.2901635
14.
Park
,
J. J.
, and
Ulsoy
,
A. G.
,
1993
, “
On-Line Flank Wear Estimation Using an Adaptive Observer and Computer Vision, Part II: Experiment
,”
ASME J. Eng. Ind.
,
115
(
1
), pp.
37
43
. 10.1115/1.2901636
15.
Koren
,
Y.
,
1980
, “
Cross-Coupled Biaxial Computer Control for Manufacturing Systems
,”
ASME J. Dyn. Syst. Meas. Control
,
102
(
4
), pp.
265
272
. 10.1115/1.3149612
16.
Ulsoy
,
G.
, and
Koren
,
Y.
,
1993
, “
Control of Machining Processes
,”
ASME J. Dyn. Syst. Meas. Control
,
115
(
2B
), pp.
301
308
. 10.1115/1.2899070
17.
Amitay
,
G.
,
Malkin
,
S.
, and
Koren
,
Y.
,
1981
, “
Adaptive Control Optimization of Grinding
,”
ASME J. Eng. Ind.
,
103
(
1
), pp.
103
108
. 10.1115/1.3184449
18.
Malkin
,
S.
, and
Koren
,
Y.
,
1984
, “
Optimal Infeed Control for Accelerated Spark-Out in Plunge Grinding
,”
ASME J. Eng. Ind.
,
106
(
1
), pp.
70
74
. 10.1115/1.3185913
19.
Adamson
,
A.
,
Ulsoy
,
A. G.
, and
Demeri
,
M.
,
1996
, “
Dimensional Control in Sheet Metal Forming Via Active Binder Force Adjustment
,”
Trans. NAMRI/SME, XXIV
,
24
, pp.
167
178
.
20.
Hsu
,
C.-W.
,
Ulsoy
,
A. G.
, and
Demeri
,
M. Y.
,
2000
, “
An Approach for Modeling Sheet Metal Forming for Process Control Design
,”
ASME J. Manuf. Sci. Eng.
,
122
(
4
), pp.
717
724
. 10.1115/1.1286815
21.
Lim
,
Y. S.
,
Venugopal
,
R.
, and
Ulsoy
,
A. G.
,
2010
, “
Multi-Input Multi-Output Modeling and Control for Stamping
,”
ASME J. Dyn. Syst. Meas. Control
,
132
(
4
), p.
041004
. 10.1115/1.4001332
22.
Lim
,
Y.
,
Venugopal
,
R.
, and
Ulsoy
,
A. G.
,
2012
, “
Auto-Tuning and Adaptive Control of Sheet Metal Forming
,”
Control Eng. Pract.
,
20
(
2
), pp.
156
164
. 10.1016/j.conengprac.2011.10.006
23.
Lim
,
Y.
,
Ulsoy
,
A. G.
, and
Venugopal
,
R.
,
2013
,
Process Control for Sheet Metal Stamping
,
Springer
,
New York
.
24.
Landers
,
R. G.
, and
Ulsoy
,
A. G.
,
2008
, “
Nonlinear Feed Effect in Machining Chatter Analysis
,”
ASME J. Manuf. Sci. Eng.
,
130
(
1
), p.
011017
. 10.1115/1.2783276
25.
Pakdemirli
,
M.
, and
Ulsoy
,
A. G.
,
1997
, “
Perturbation Analysis of Spindle Speed Variation in Machine Tool Chatter
,”
J. Vib. Control
,
3
(
3
), pp.
261
278
. 10.1177/107754639700300302
26.
Zelwer
,
O.
, and
Malkin
,
S.
,
1980
, “
Grinding of WC-Co Cemented Carbides
,”
ASME J. Eng. Ind.
,
102
(
3
), pp.
209
220
. 10.1115/1.3183856
27.
Linke
,
B. S.
,
Garretson
,
I.
,
Torner
,
F.
, and
Seewig
,
J.
,
2017
, “
Grinding Energy Modeling Based on Friction, Plowing, and Shearing
,”
ASME J. Manuf. Sci. Eng.
,
139
(
12
), p.
121009
. 10.1115/1.4037239
28.
Taylor
,
F. W.
,
1907
, “
On the Art of Cutting Tools
,”
Trans. ASME
,
28
.
29.
Li
,
S.
,
Tang
,
A.
,
Liu
,
Y.
,
Wang
,
J.
,
Cui
,
D.
, and
Landers
,
R. G.
,
2017
, “
Analytical Force Modeling of Wire Saw Machining With Application to SiC Monocrystal Wafer Processing
,”
ASME J. Manuf. Sci. Eng.
,
139
(
4
), p.
041003
. 10.1115/1.4034792
30.
Everton
,
S. K.
,
Hirsch
,
M.
,
Stravroulakis
,
P.
,
Leach
,
R. K.
, and
Clare
,
A. T.
,
2016
, “
Review of In-Situ Process Monitoring and In-Situ Metrology for Metal Additive Manufacturing
,”
Mater. Des.
,
95
(
5
), pp.
431
445
. 10.1016/j.matdes.2016.01.099
31.
Bae
,
C.-J.
,
Diggs
,
A. B.
, and
Ramachandran
,
A.
,
2018
, “Quantification and Certification of Additive Manufacturing Materials and Processes,”
Additive Manufacturing
,
J.
Zhang
and
Y.-G.
Jung
, eds.,
Elsevier
,
Oxford, UK
, pp.
181
213
.
32.
Onses
,
M. S.
,
Sutanto
,
E.
,
Ferreira
,
P. M.
,
Alleyne
,
A. G.
, and
Rogers
,
J. A.
,
2015
, “
Mechanisms, Capabilities, and Applications of High-Resolution Electrohydrodynamic Jet Printing
,”
Small
,
11
(
34
), pp.
4237
4266
. 10.1002/smll.201500593
33.
Subramaniam
,
S.
,
Samykano
,
M.
,
Selvamani
,
S.
,
Ngui
,
W.
,
Kadirgama
,
K.
,
Sudhakar
,
K.
, and
Idris
,
M.
,
2019
, “
3D Printing: Overview of PLA Progress
,” AIP Conference Proceedings,
2059
,
AIP Publishing LLC
, p.
020015
.
34.
Hafkamp
,
T.
,
van Baars
,
G.
,
de Jager
,
B.
, and
Etman
,
P.
,
2018
, “
A Feasibility Study on Process Monitoring and Control in Vat Photopolymerization of Ceramics
,”
Mechatronics
,
56
, pp.
220
241
. 10.1016/j.mechatronics.2018.02.006
35.
Beuth
,
J.
,
Fox
,
J.
,
Gockel
,
J.
,
Montgomery
,
C.
,
Yang
,
R.
,
Qiao
,
H.
,
Soylemez
,
E.
,
Reeseewatt
,
P.
,
Anvari
,
A.
,
Narra
,
S.
, and
Klingbeil
,
N.
,
2013
, “
Process Mapping for Qualification Across Multiple Direct Metal Additive Manufacturing Processes
,”
Proceedings of SFF Symposium
,
Austin, TX
,
Aug. 12–14
.
36.
Choi
,
H. K.
,
Park
,
J. -U.
,
Park
,
O. O.
,
Ferreira
,
P. M.
,
Georgiadis
,
J. G.
, and
Rogers
,
J. A.
,
2008
, “
Scaling Laws for Jet Pulsations Associated With High-Resolution Electrohydrodynamic Printing
,”
Appl. Phys. Lett.
,
92
(
12
), p.
123109
. 10.1063/1.2903700
37.
Mishra
,
S.
,
Barton
,
K. L.
,
Alleyne
,
A. G.
,
Ferreira
,
P. M.
, and
Rogers
,
J. A.
,
2010
, “
High-Speed and Drop-on-Demand Printing With a Pulsed Electrohydrodynamic Jet
,”
J. Micromech. Microeng.
,
20
(
9
), p.
095026
. 10.1088/0960-1317/20/9/095026
38.
Comminal
,
R.
,
Serdeczny
,
M. P.
,
Pedersen
,
D. B.
, and
Spangenberg
,
J.
,
2018
, “
Numerical Modeling of the Strand Deposition Flow in Extrusion-Based Additive Manufacturing
,”
Addit. Manuf.
,
20
, pp.
68
76
.
39.
Bellini
,
A.
,
Guceri
,
S.
, and
Bertoldi
,
M.
,
2004
, “
Liquefier Dynamics in Fused Deposition
,”
ASME J. Manuf. Sci. Eng.
,
126
(
2
), pp.
237
246
. 10.1115/1.1688377
40.
Aksoy
,
D.
,
Balta
,
E. C.
,
Tilbury
,
D. M.
, and
Barton
,
K.
,
2020
, “
A Control-Oriented Model for Bead Cross-Sectional Geometry in Fused Deposition Modeling
,”
American Control Conference
,
Denver, CO
,
July 1–3
.
41.
Landers
,
R. G.
, and
Ulsoy
,
A. G.
,
2003
, “
Model-Based Machining Force Control
,”
ASME J. Dyn. Syst. Meas. Control
,
122
(
3
), pp.
521
527
. 10.1115/1.1286821
42.
Taysom
,
B. S.
,
Sorensen
,
C. D.
, and
Hedengren
,
J. D.
,
2017
, “
A Comparison of Model Predictive Control and PID Temperature Control in Friction Stir Welding
,”
J. Manuf. Processes
,
29
, pp.
232
241
. 10.1016/j.jmapro.2017.07.015
43.
Sunseri
,
M.
,
Cao
,
J.
,
Karafillis
,
A. P.
, and
Boyce
,
M.
,
1996
, “
Accommodation of Springback Error in Channel Forming Using Active Binder Force Control: Numerical Simulation and Experiments
,”
ASME J. Eng. Mater. Technol.
,
118
(
3
), pp.
426
430
. 10.1115/1.2806830
44.
Nielsen
,
C. V.
, and
Bay
,
N.
,
2018
, “
Review of Friction Modeling in Metal Forming Processes
,”
J. Mater. Process. Technol.
,
255
, pp.
234
241
. 10.1016/j.jmatprotec.2017.12.023
45.
Allwood
,
J. M.
,
Duncan
,
S. R.
,
Cao
,
J.
,
Gorche
,
P.
,
Hirt
,
G.
,
Kinsey
,
B.
,
Kuboki
,
T.
,
Liewald
,
M.
,
Sterzing
,
A.
, and
Tekkaya
,
A. E.
,
2016
, “
Closed-Loop Control of Product Properties in Metal Forming
,”
CIRP Ann. Manuf. Technol.
,
65
(
2
), pp.
573
596
. 10.1016/j.cirp.2016.06.002
46.
Halmos
,
G. T.
,
2005
,
Roll Forming Handbook
,
CRC Press
,
New York
.
47.
Beynon
,
J. H.
, and
Sellars
,
C. M.
,
1992
, “
Modelling Microstructure and Its Effects During Multipass Hot Rolling
,”
ISIJ Int.
,
32
(
3
), pp.
359
367
. 10.2355/isijinternational.32.359
48.
Domanti
,
S. A.
, and
McElwain
,
D. L. S.
,
1998
, “
Cold Rolling of Flat Metal Products: Contribution of Mathematical Modelling
,”
Proc. Inst. Mech. Eng. B
,
212
(
1
), pp.
73
86
. 10.1243/0954405981515518
49.
Takahashi
,
R.
,
2001
, “
State of the Art in Hot Rolling Process Control
,”
Control Eng. Pract.
,
9
(
9
), pp.
987
993
. 10.1016/S0967-0661(01)00087-9
50.
Pagilla
,
P. R.
,
Garimella
,
S. S.
,
Dreihoefer
,
L. H.
, and
King
,
E. O.
,
2001
, “
Dynamics and Control of Accumulators in Continuous Strip Processing Lines
,”
IEEE Trans. Ind. Appl.
,
37
(
3
), pp.
934
940
. 10.1109/28.924778
51.
Lu
,
Y.
, and
Pagilla
,
P. R.
,
2014
, “
Modeling of Temperature Distribution in Moving Webs in Roll-to-Roll Manufacturing
,”
ASME J. Therm. Sci. Eng. Appl.
,
6
(
4
), p.
041012
. 10.1115/1.4028048
52.
Lu
,
Y.
,
Jee
,
C.
, and
Pagilla
,
P. R.
,
2016
, “
Design of a Model-Based Observer for Estimation of Steel Strip Tension in Continuous Galavanizing/Annealing Lines
,”
Proceedings of the American Control Conference
,
Boston, MA
,
July 6–8
.
53.
Li
,
M.
,
Tang
,
L.
,
Landers
,
R. G.
, and
Leu
,
M. C.
,
2013
, “
Extrusion Process Modeling for Aqueous-Based Ceramic Pastes, Part 1: Constitutive Model
,”
ASME J. Manuf. Sci. Eng.
,
135
(
5
), p.
051008
. 10.1115/1.4025014
54.
Li
,
M.
,
Tang
,
L.
,
Landers
,
R. G.
, and
Leu
,
M. C.
,
2013
, “
Extrusion Process Modeling for Aqueous-Based Ceramic Pastes, Part 2: Experimental Verification
,”
ASME J. Manuf. Sci. Eng.
,
135
(
5
), p.
051017
. 10.1115/1.4025089
55.
Doumanidis
,
C.
, and
Kwak
,
Y.-M.
,
2001
, “
Geometry Modeling and Control by Infrared and Laser Sensing in Thermal Manufacturing With Material Deposition
,”
ASME J. Manuf. Sci. Eng.
,
123
(
1
), pp.
45
52
. 10.1115/1.1344898
56.
Sammons
,
P. M.
,
Bristow
,
D. A.
, and
Landers
,
R. G.
,
2013
, “
Height Dependent Laser Metal Deposition Process Modeling
,”
ASME J. Manuf. Sci. Eng.
,
135
(
5
), p.
054501
. 10.1115/1.4025061
57.
Pannier
,
C. P.
,
Diagne
,
M.
,
Spiegel
,
I. A.
,
Hoelzle
,
D. J.
, and
Barton
,
K.
,
2017
, “
A Dynamical Model of Drop Spreading in Electrohydrodynamic Jet Printing
,”
ASME J. Manuf. Sci. Eng.
,
139
(
11
), p.
111008
. 10.1115/1.4037436
58.
Spiegel
,
I.
,
Sammons
,
P.
, and
Barton
,
K.
,
2020
, “
Hybrid Modeling of Electrohydrodynamic Jet Printing
,”
IEEE Trans. Controls Syst. Technol.
, pp.
1
14
.
59.
Sammons
,
P. M.
,
Bristow
,
D. A.
, and
Landers
,
R. G.
,
2019
, “
Two-Dimensional Modeling and System Identification of the Laser Metal Deposition Process
,”
ASME J. Dyn. Syst. Meas. Control
,
141
(
2
), p.
021012
. 10.1115/1.4041444
60.
Thompson
,
R. A.
,
1986
, “
On the Doubly Regenerative Stability of a Grinder: The Mathematical Analysis of Chatter Growth
,”
ASME J. Eng. Ind.
,
108
(
2
), pp.
83
92
. 10.1115/1.3187055
61.
El-Wardani
,
T.
,
Sadek
,
M. M.
, and
Younis
,
M. A.
,
1987
, “
Theoretical Analysis of Grinding Chatter
,”
ASME J. Eng. Ind.
,
109
(
4
), pp.
314
320
. 10.1115/1.3187134
62.
Thompson
,
R. A.
,
1992
, “
On the Doubly Regenerative Stability of a Grinder: The Effect of Contact Stiffness and Wave Filtering
,”
ASME J. Eng. Ind.
,
114
(
1
), pp.
53
60
. 10.1115/1.2899758
63.
Li
,
H.
, and
Shin
,
Y. C.
,
2005
, “
Wheel Regenerative Chatter of Surface Grinding
,”
ASME J. Manuf. Sci. Eng.
,
128
(
2
), pp.
393
403
. 10.1115/1.2137752
64.
Li
,
H.
, and
Shin
,
Y. C.
,
2005
, “
A Time-Domain Dynamic Model for Chatter Prediction of Cylindrical Plunge Grinding Processes
,”
ASME J. Manuf. Sci. Eng.
,
128
(
2
), pp.
404
415
. 10.1115/1.2118748
65.
Li
,
H.
, and
Shin
,
Y. C.
,
2006
, “
A Time Domain Dynamic Simulation Model for Stability Prediction of Infeed Centerless Grinding Processes
,”
ASME J. Manuf. Sci. Eng.
,
129
(
3
), pp.
539
550
. 10.1115/1.2716729
66.
Barrenetxea
,
D.
,
Alvarez
,
J.
,
Marquínez
,
J. I.
,
Madariaga
,
J.
,
Gallego
,
I.
, and
Perello
,
I. M.
,
2010
, “
New Models and Global Stability Charts to Avoid Principal Instabilities and Constraints in Throughfeed Centerless Grinding
,”
ASME J. Manuf. Sci. Eng.
,
132
(
1
), p.
011014
. 10.1115/1.4000931
67.
Yun
,
I. S.
,
Wilson
,
W. R. D.
, and
Ehmann
,
K. F.
,
1998
, “
Review of Chatter Studies in Cold Rolling
,”
Int. J. Mach. Tools Manuf.
,
38
(
12
), pp.
1499
1530
. 10.1016/S0890-6955(97)00133-8
68.
Budak
,
E.
, and
Altintas
,
Y.
,
1998
, “
Analytical Prediction of Chatter Stability in Milling—Part I: General Formulation
,”
ASME J. Dyn. Syst. Meas. Control
,
120
(
1
), pp.
22
30
. 10.1115/1.2801317
69.
Budak
,
E.
, and
Altintas
,
Y.
,
1998
, “
Analytical Prediction of Chatter Stability in Milling—Part II: Application of the General Formulation to Common Milling Systems
,”
ASME J. Dyn. Syst. Meas. Control
,
120
(
1
), pp.
31
36
. 10.1115/1.2801318
70.
Koga
,
S.
,
Straub
,
D.
,
Diagne
,
M.
, and
Krstic
,
M.
,
2020
, “
Stabilization of Filament Production Rate for Screw Extrusion-Based Polymer Three-Dimensional-Printing
,”
J. Dyn. Syst. Meas. Control
,
142
(
3
), p.
031005
. 10.1115/1.4045560
71.
Landers
,
R. G.
,
Ulsoy
,
A. G.
, and
Ma
,
Y. H.
,
2004
, “
A Comparison of Model-Based Machining Force Control Approaches
,”
Int. J. Mach. Tools Manuf.
,
44
(
7–8
), pp.
733
748
. 10.1016/j.ijmachtools.2004.02.005
72.
Kiran
,
D. V.
,
Basu
,
B.
, and
De
,
A.
,
2012
, “
Influence of Process Variables on Weld Bead Quality in Two Wire Tandem Submerged Arc Welding of HSLA Steel
,”
J. Mater. Process. Technol.
,
212
(
10
), pp.
2041
2050
. 10.1016/j.jmatprotec.2012.05.008
73.
Pandit
,
S. M.
, and
Sathyanarayanan
,
G.
,
1982
, “
A Model for Surface Grinding Based on Abrasive Geometry and Elasticity
,”
ASME J. Eng. Ind.
,
104
(
4
), pp.
349
357
. 10.1115/1.3185841
74.
Subramanian
,
K. S.
,
Babu
,
N. R.
,
Jain
,
A.
, and
Vairamuthu
,
R.
,
2017
, “
Microscopic Interactions in Surface Generation Processes Using Abrasive Tools
,”
ASME J. Manuf. Sci. Eng.
,
139
(
12
), p.
121016
. 10.1115/1.4038138
75.
Salisbury
,
E. J.
,
Domala
,
K. V.
,
Moon
,
K. S.
,
Miller
,
M. H.
, and
Sutherland
,
J. W.
,
2001
, “
A Three-Dimensional Model for the Surface Texture in Surface Grinding, Part 2: Surface Generation Model
,”
ASME J. Manuf. Sci. Eng.
,
123
(
4
), pp.
576
581
. 10.1115/1.1391427
76.
Salisbury
,
E. J.
,
Domala
,
K. V.
,
Moon
,
K. S.
,
Miller
,
M. H.
, and
Sutherland
,
J. W.
,
2001
, “
A Three-Dimensional Model for the Surface Texture in Surface Grinding, Part 2: Grinding Wheel Surface Texture Model
,”
ASME J. Manuf. Sci. Eng.
,
123
(
4
), pp.
582
590
. 10.1115/1.1391428
77.
Nguyen
,
T.
,
Liu
,
M.
,
Zhang
,
L.
,
Wu
,
Q.
, and
Sun
,
D.
,
2014
, “
An Investigation of the Grinding-Hardening Induced by Traverse Cylindrical Grinding
,”
ASME J. Manuf. Sci. Eng.
,
136
(
5
), p.
051008
. 10.1115/1.4028058
78.
de Paiva
,
R. L.
,
da Silva
,
R. B.
,
Jackson
,
M. J.
, and
Abrao
,
A. M.
,
2017
, “
The Influence of Cutting Fluid Concentration on Surface Integrity of VP80 Steel and the Influence of Cutting Fluid Flow Rate on Surface Roughness of VPATLAS Steel After Grinding
,”
ASME J. Manuf. Sci. Eng.
,
139
(
12
), p.
121003
. 10.1115/1.4038149
79.
Chen
,
H.
,
Yao
,
Y. L.
, and
Kysar
,
J. W.
,
2004
, “
Spatially Resolved Characterization of Residual Stress Induced by Micro Scale Laser Shock Peening
,”
ASME J. Manuf. Sci. Eng.
,
126
(
2
), pp.
226
236
. 10.1115/1.1751189
80.
Cheng
,
G. J.
,
Cai
,
M.
,
Pirzada
,
D.
,
Guinel
,
M. J.-F.
, and
Norton
,
M. G.
,
2008
, “
Plastic Deformation in Silicon Crystal Induced by Heat-Assisted Laser Shock Peening
,”
ASME J. Manuf. Sci. Eng.
,
130
(
1
), p.
011008
. 10.1115/1.2815343
81.
Lavine
,
A. S.
,
1988
, “
A Simple Model for Convective Cooling During the Grinding Process
,”
ASME J. Eng. Ind.
,
110
(
1
), pp.
1
6
. 10.1115/1.3187837
82.
de Sampaio Alves
,
L. O. B.
,
de Souza Ruzzi
,
R.
,
da Silva
,
R. B.
,
Jackson
,
M. J.
,
Tarrento
,
G. E.
,
de Mello
,
H. J.
,
de Aguiar
,
P. R.
, and
Bianchi
,
E. C.
,
2017
, “
Performance Evaluation of the Minimum Quantity of Lubricant Technique With Auxiliary Cleaning of the Grinding Wheel in Cylindrical Grinding of N2711 Steel
,”
ASME J. Manuf. Sci. Eng.
,
139
(
12
), p.
121018
. 10.1115/1.4037041
83.
Wang
,
X.-J.
,
Zhou
,
J.-H.
,
Yan
,
H.-C.
, and
Pang
,
C. K.
,
2018
, “
Quality Monitoring of Spot Welding With Advanced Signal Processing and Data-Driven Techniques
,”
Trans. Inst. Meas. Control
,
40
(
7
), pp.
2291
2302
. 10.1177/0142331217700703
84.
Nandan
,
R.
,
DebRoy
,
T.
, and
Bhadeshia
,
H. K. D. H.
,
2008
, “
Recent Advances in Friction-Stir Welding—Process, Weldment Structure and Properties
,”
Prog. Mater. Sci.
,
53
(
6
), pp.
980
1023
. 10.1016/j.pmatsci.2008.05.001
85.
Yan
,
W.
,
Lin
,
S.
,
Kafka
,
O. L.
,
Lian
,
Y.
,
Yu
,
C.
,
Liu
,
Z.
,
Yan
,
J.
,
Wolff
,
S.
,
Wu
,
H.
,
Ndip-Agbor
,
E.
,
Mozaffar
,
M.
,
Ehmann
,
E.
,
Cao
,
J.
,
Wagner
,
G. J.
, and
Liu
,
W. K.
,
2018
, “
Data-Driven Multi-Scale Multi-Physics Models to Derive Process–Structure–Property Relationships for Additive Manufacturing
,”
Comput. Mech.
,
61
(
5
), pp.
521
541
. 10.1007/s00466-018-1539-z
86.
Kim
,
H.
,
Lin
,
Y.
, and
Tseng
,
T.-L. B.
,
2018
, “
A Review on Quality Control in Additive Manufacturing
,”
Rapid Prototyping J.
,
24
(
3
), pp.
645
669
. 10.1108/RPJ-03-2017-0048
87.
Bikas
,
H.
,
Stavropoulos
,
P.
, and
Chryssolouris
,
G.
,
2016
, “
Additive Manufacturing Methods and Modelling Approaches: A Critical Review
,”
Int. J. Adv. Manuf. Technol.
,
83
(
1–4
), pp.
389
405
. 10.1007/s00170-015-7576-2
88.
You
,
D.
,
Gao
,
X.
, and
Katayama
,
S.
,
2016
, “
Data-Driven Based Analyzing and Modeling of MIMO Laser Welding Process by Integration of Six Advanced Sensors
,”
Int. J. Adv. Manuf. Technol.
,
82
(
5–8
), pp.
1127
1139
. 10.1007/s00170-015-7455-x
89.
Tomizuka
,
M.
,
Oh
,
J. H.
, and
Dornfeld
,
D. A.
,
1983
, “
Model Reference Adaptive Control of the Milling Process
,”
ASME Winter Annual Meeting
,
New Orleans, LA
,
Nov. 28–Dec. 3
, pp.
55
63
.
90.
Zhao
,
X.
,
Landers
,
R.
, and
Leu
,
M.
,
2008
, “
Adaptive Extrusion Force Control of Freeze-Form Extrusion Fabrication Processes
,”
ASME J. Manuf. Sci. Eng.
,
132
(
6
), p.
064504
. 10.1115/1.4003009
91.
Smith
,
B. P.
,
Ashrafi
,
M.
,
Tuttle
,
M. E.
, and
Devasia
,
S.
,
2016
, “
Bondline Temperature Control for Joining Composites With an Embedded Heater
,”
ASME J. Manuf. Sci. Eng.
,
138
(
2
), p.
021011
. 10.1115/1.4031069
92.
Smith
,
D. A.
,
Smith
,
S.
, and
Tlusty
,
J.
,
1998
, “
High Performance Milling Torque Sensor
,”
ASME J. Manuf. Sci. Eng.
,
120
(
3
), pp.
504
514
. 10.1115/1.2830153
93.
Jun
,
M.
,
Ozdoganlar
,
B.
,
DeVor
,
R.
,
Kapoor
,
S.
,
Kirchheim
,
K.
, and
Schaffner
,
G.
,
2002
, “
Evaluation of a Spindle-Based Force Sensor for Monitoring and Fault Diagnosis of Machining Operations
,”
Int. J. Mach. Tools Manuf.
,
42
(
6
), pp.
741
751
. 10.1016/S0890-6955(01)00156-0
94.
Byrne
,
G.
, and
O’Donnell
,
G. E.
,
2007
, “
An Integrated Force Sensor Solution for Process Monitoring of Drilling Operations
,”
Ann. CIRP
,
56
(
1
), pp.
89
92
. 10.1016/j.cirp.2007.05.023
95.
Stein
,
J. L.
, and
Wang
,
C.-H.
,
1990
, “
Analysis of Power Monitoring on AC Induction Drive Systems
,”
ASME J. Dyn. Syst. Meas. Control
,
112
(
2
), pp.
239
248
. 10.1115/1.2896131
96.
Axinte
,
D.
, and
Gindy
,
N.
,
2004
, “
Assessment of the Effectiveness of a Spindle Power Signal for Tool Condition Monitoring in Machining Processes
,”
Int. J. Prod. Res.
,
42
(
13
), pp.
2679
2691
. 10.1080/00207540410001671642
97.
Aggarwal
,
S.
,
Nesic
,
N.
, and
Xirouchakis
,
P.
,
2012
, “
Cutting Torque and Tangential Cutting Force Coefficient Identification From Spindle Motor Current
,”
Int. J. Adv. Manuf. Technol.
,
65
, pp.
81
95
. 10.1007/s00170-012-4152-x
98.
Kim
,
D.
, and
Jeon
,
D.
,
2011
, “
Fuzzy-Logic Control of Cutting Forces in CNC Milling Processes Using Motor Currents as Indirect Force Sensors
,”
Precis. Eng.
,
35
(
1
), pp.
143
152
. 10.1016/j.precisioneng.2010.09.001
99.
Whitney
,
D. E.
,
Edsall
,
A. C.
,
Todtenkopf
,
A. B.
,
Kurfess
,
T. R.
, and
Tate
,
A. R.
,
1990
, “
Development and Control of an Automated Robotic Weld Bead Grinding System
,”
ASME J. Dyn. Meas. Control
,
112
(
2
), pp.
166
176
. 10.1115/1.2896123
100.
Kurfess
,
T. R.
, and
Whitney
,
D. E.
,
1992
, “
Predictive Control of a Robotic Grinding System
,”
ASME J. Eng. Ind.
,
114
(
4
), pp.
412
420
. 10.1115/1.2900692
101.
Xu
,
C.
, and
Shin
,
Y. C.
,
2006
, “
Control of Cutting Force for Creep-Feed Grinding Processes Using a Multi-Level Fuzzy Controller
,”
ASME J. Dyn. Meas. Control
,
129
(
4
), pp.
480
492
. 10.1115/1.2718238
102.
Xie
,
X.
, and
Sun
,
L.
,
2016
, “
Force Control Based Robotic Grinding System and Application
,”
12th World Congress on Intelligent Control and Automation
,
Guilin, China
, June 12-15.
103.
Razavi
,
H. A.
, and
Kurfess
,
T. R.
,
2003
, “
Detection of Wheel and Workpiece Contact/Release in Reciprocating Surface Grinding
,”
ASME J. Manuf. Sci. Eng.
,
125
(
2
), pp.
394
395
. 10.1115/1.1559160
104.
Emblom
,
W. J.
, and
Weinmann
,
K. J.
,
2011
, “
A Control Strategy for Intelligent Stamp Forming Tooling
,”
ASME J. Manuf. Sci. Technol.
,
133
(
6
), p.
061026
. 10.1115/1.4005310
105.
Bohn
,
M. L.
,
1999
, “
Optimization of the Sheet Metal Stamping Process: Closed-Loop Active Draw Bead Control Combined With In-Die Process Sensing
,” Ph.D. thesis,
Michigan Technological University
,
Hougton, MI
.
106.
Zhao
,
X.
,
Kalya
,
P.
,
Landers
,
R. G.
, and
Krishnamurthy
,
K.
,
2008
, “
Design and Implementation of Nonlinear Force Controllers for Friction Stir Welding Processes
,”
ASME J. Manuf. Sci. Eng.
,
130
(
6
), p.
061011
. 10.1115/1.3006326
107.
Gibson
,
B. T.
,
Lammlein
,
D. H.
,
Prater
,
T. J.
,
Longhurst
,
W. R.
,
Cox
,
C. D.
,
Ballun
,
M. C.
,
Dharmaraj
,
K. J.
,
Cook
,
G. E.
, and
Strauss
,
A. M.
,
2014
, “
Friction Stir Welding: Process, Automation, and Control
,”
J. Manuf. Processes
,
16
(
1, SI
), pp.
56
73
. 10.1016/j.jmapro.2013.04.002
108.
Mishra
,
D.
,
Roy
,
R. B.
,
Dutta
,
S.
,
Pal
,
S. K.
, and
Chakravarty
,
D.
,
2018
, “
A Review on Sensor Based Monitoring and Control of Friction Stir Welding Process and a Roadmap to Industry 4.0
,”
J. Manuf. Processes
,
36
, pp.
373
397
. 10.1016/j.jmapro.2018.10.016
109.
Li
,
S.
,
Du
,
S.
,
Tang
,
A.
,
Landers
,
R. G.
, and
Zhang
,
Y.
,
2015
, “
Force Modeling and Control of Sic Monocrystal Wafer Processing
,”
ASME J. Manuf. Sci. Eng.
,
137
(
6
), p.
061003
. 10.1115/1.4029432
110.
Hsu
,
C. W.
,
Ulsoy
,
A. G.
, and
Demeri
,
M. Y.
,
2002
, “
Development of Process Control in Sheet Metal Forming
,”
J. Mater. Process. Technol.
,
127
(
3
), pp.
361
368
. 10.1016/S0924-0136(02)00321-7
111.
Tapia
,
G.
, and
Elwany
,
A.
,
2014
, “
A Review on Process Monitoring and Control in Metal-Based Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
060801
. 10.1115/1.4028540
112.
Rodriguez
,
E.
,
Mireles
,
J.
,
Terrazas
,
C.
,
Espalin
,
D.
,
Perez
,
M.
, and
Wicker
,
R.
,
2015
, “
Approximation of Absolute Surface Temperature Measurements of Powderbed Fusion Additive Manufacturing Technology Using In Situ Infrared Thermography
,”
Addit. Manuf.
,
5
, pp.
31
39
.
113.
Borish
,
M.
,
Post
,
B.
,
Roschli
,
A.
,
Chesser
,
P.
,
Love
,
L.
,
Gaul
,
K.
,
Sallas
,
M.
, and
Tsiamis
,
N.
,
2019
, “
In-Situ Thermal Imaging for Single Layer Buildtime Alteration in Large-Scale Polymer Additive Manufacturing
,”
Procedia Manuf.
,
34
, pp.
482
448
. 10.1016/j.promfg.2019.06.202
114.
Wang
,
X.
,
Lough
,
C.
,
Bristow
,
D.
,
Landers
,
R.
, and
Kinzel
,
E.
,
2018
, “
Effects of Thermal Camera Spatial and Temporal Resolution on Feature Extraction in Selective Laser Melting
,”
Twenty Ninth Annual Solid Freeform Fabrication Symposium
,
Austin, TX
,
Aug. 13–15
.
115.
Lough
,
C.
,
Wang
,
X.
,
Smith
,
C.
,
Landers
,
R.
,
Bristow
,
D.
,
Drallmeier
,
J.
,
Brown
,
B.
, and
Kinzel
,
E.
,
2020
, “
Correlation of SWIR Imaging With LPBF 304L Stainless Steel Part Properties
,”
Addit. Manuf.
,
35
, p.
101359
.
116.
Silva
,
A. C. F.
,
Backer
,
J. D.
, and
Bolmsjo
,
G.
,
2017
, “
Temperature Measurements During Friction Stir Welding
,”
Int. J. Adv. Manuf. Technol.
,
88
, pp.
2899
2908
. 10.1007/s00170-016-9007-4
117.
Backer
,
J. D.
, and
Bolmsjo
,
G.
,
2013
, “
Thermoelectric Method for Temperature Measurement in Friction Stir Welding
,”
Sci. Technol. Weld. Joining
,
18
(
7
), pp.
558
565
. 10.1179/1362171813Y.0000000135
118.
Gupta
,
P.
, and
Jeswiet
,
J.
,
2018
, “
Effect of Temperatures During Forming in Single Point Incremental Forming
,”
Int. J. Adv. Manuf. Technol.
,
95
, pp.
3693
3706
. 10.1007/s00170-017-1400-0
119.
Cobos-Torres
,
O.
, and
Pagilla
,
P. R.
,
2017
, “
Temperature Distribution in Moving Webs Heated by Radiation Panels: Model Development and Experimental Validation
,”
ASME J. Dyn. Syst. Meas. Control
,
139
(
5
), p.
051003
. 10.1115/1.4035297
120.
Ueda
,
T.
,
1985
, “
Studies on Temperature of Abrasive Grains in Grinding—Application of Infrared Radiation Pyrometer
,”
ASME J. Eng. Ind.
,
107
(
2
), pp.
127
133
. 10.1115/1.3185975
121.
Guo
,
C.
, and
Malkin
,
S.
,
1995
, “
Analysis of Transient Temperatures in Grinding
,”
ASME J. Eng. Ind.
,
117
(
4
), pp.
571
577
. 10.1115/1.2803535
122.
Kato
,
T.
, and
Fujii
,
H.
,
1998
, “
Temperature Measurement of Workpieces in Conventional Surface Grinding
,”
ASME J. Manuf. Sci. Eng.
,
122
(
2
), pp.
297
303
. 10.1115/1.538918
123.
Demetriou
,
M. D.
, and
Lavine
,
A. S.
,
1999
, “
Thermal Aspects of Grinding: The Case of Upgrinding
,”
ASME J. Manuf. Sci. Eng.
,
122
(
4
), pp.
605
611
. 10.1115/1.1285877
124.
Shen
,
B.
,
Shih
,
A. J.
, and
Xiao
,
G.
,
2011
, “
A Heat Transfer Model Based on Finite Difference Method for Grinding
,”
ASME J. Manuf. Sci. Eng.
,
133
(
3
), p.
031001
. 10.1115/1.4003947
125.
Rowe
,
W. B.
,
2017
, “
Temperatures in Grinding—A Review
,”
ASME J. Manuf. Sci. Eng.
,
139
(
12
), p.
121001
. 10.1115/1.4036638
126.
Ueda
,
T.
,
Hosokawa
,
A.
, and
Yamamoto
,
A.
,
1986
, “
Measurement of Grinding Temperature Using Infrared Radiation Pyrometer With Optical Fiber
,”
ASME J. Eng. Ind.
,
108
(
4
), pp.
247
251
. 10.1115/1.3187074
127.
Kato
,
T.
, and
Fujii
,
H.
,
1999
, “
Energy Partition in Conventional Surface Grinding
,”
ASME J. Manuf. Sci. Eng.
,
121
(
3
), pp.
393
398
. 10.1115/1.2832694
128.
Taylor
,
E.
, and
Slatter
,
T.
,
2017
, “
Role of Temperature Parameters in Achieving Precision Traverse Cylindrical Grinding of Chrome-Plated Ferrous Metal Rolls
,”
ASME J. Manuf. Sci. Eng.
,
139
(
12
), p.
121012
. 10.1115/1.4037889
129.
Attia
,
M. H.
, and
Kops
,
L.
,
1986
, “
Distortion in Thermal Field Around Inserted Thermocouples in Experimental Interfacial Studies
,”
ASME J. Eng. Ind.
,
108
(
1
), pp.
241
246
. 10.1115/1.3187073
130.
Stephenson
,
D. A.
,
1991
, “
Assessment of Steadystate Metal Cutting Temperature Models Based on Simultaneous Infrared and Thermocouple Data
,”
ASME J. Eng. Ind.
,
113
(
2
), pp.
121
128
. 10.1115/1.2899668
131.
Al Huda
,
M.
,
Yamada
,
K.
,
Hosokawa
,
A.
, and
Ueda
,
T.
,
2002
, “
Investigation of Temperature at Tool-Chip Interface in Turning Using Two-Color Pyrometer
,”
ASME J. Manuf. Sci. Eng.
,
124
(
2
), pp.
200
207
. 10.1115/1.1455641
132.
Davies
,
M. A.
,
Ueda
,
T.
,
M’Saoubi
,
R.
,
Mullany
,
B.
, and
Cooke
,
A. L.
,
2007
, “
On the Measurement of Temperature in Material Removal Processes
,”
Ann. CIRP
,
56
(
2
), pp.
581
604
. 10.1016/j.cirp.2007.10.009
133.
Jayakumar
,
T.
,
Mukhopadhyay
,
C. K.
,
Venugopal
,
S.
,
Mannan
,
S. L.
, and
Raj
,
B.
,
2005
, “
A Review of the Application of Acoustic Emission Techniques for Monitoring Forming and Grinding Processes
,”
J. Mater. Process. Technol.
,
159
(
1
), pp.
48
61
. 10.1016/j.jmatprotec.2004.01.034
134.
Govekar
,
E.
,
Gradisek
,
J.
, and
Grabec
,
I.
,
2000
, “
Analysis of AE Signals and Monitoring of Machining Processes
,”
Ultrasonics
,
38
(
1–8
), pp.
598
603
. 10.1016/S0041-624X(99)00126-2
135.
Tsai
,
N.-C.
,
Chen
,
D.-C.
, and
Lee
,
R.-M.
,
2009
, “
Chatter Prevention for Milling Process by Acoustic Signal Feedback
,”
Int. J. Adv. Manuf. Technol.
,
47
, pp.
1013
1021
. 10.1007/s00170-009-2245-y
136.
Karpuschewski
,
B.
,
Wehmeier
,
M.
, and
Inasak
,
I.
,
2000
, “
Grinding Monitoring System Based on Power and Acoustic Emission Sensors
,”
Ann. CIRP
,
49
(
1
), pp.
235
240
. 10.1016/S0007-8506(07)62936-9
137.
Ivester
,
R.
,
Danai
,
K.
, and
Malkin
,
S.
,
1997
, “
Cycle-Time Reduction in Machining by Recursive Constraint Bounding
,”
ASME J. Manuf. Sci. Eng.
,
119
(
2
), pp.
201
207
. 10.1115/1.2831096
138.
Xiao
,
G.
,
Malkin
,
S.
, and
Danai
,
K.
,
1993
, “
Autonomous System for Multistage Cylindrical Grinding
,”
ASME J. Dyn. Syst. Meas. Control
,
115
(
4
), pp.
667
672
. 10.1115/1.2899194
139.
Longanbach
,
D. L.
, and
Kurfess
,
T. R.
,
1998
, “
Real-Time Measurement for an Internal Grinding System
,”
Trans. North Am. Res. Inst.
,
26
, pp.
317
322
.
140.
Longanbach
,
D. L.
, and
Kurfess
,
T. R.
,
2001
, “
In-Process Gauge Frequency Response Measurement
,”
Mechatronics
,
11
(
6
), pp.
754
757
. 10.1016/S0957-4158(00)00051-9
141.
Rao
,
P.
,
Bukkapatnam
,
S.
,
Beyca
,
O.
,
Kong
,
Z. J.
, and
Komanduri
,
R.
,
2014
, “
Real-Time Identification of Incipient Surface Morphology Variations in Ultraprecision Machining Process
,”
ASME J. Manuf. Sci. Eng.
,
136
(
2
), p.
021008
. 10.1115/1.4026210
142.
Shieh
,
J.
,
Huber
,
J.
,
Fleck
,
N. A.
, and
Ashby
,
M. F.
,
2001
, “
The Selection of Sensors
,”
Prog. Mater. Sci.
,
46
, pp.
461
504
. 10.1016/S0079-6425(00)00011-6
143.
Polyblank
,
J. A.
,
Allwood
,
J. M.
, and
Duncan
,
S. R.
,
2014
, “
Closed-Loop Control of Product Properties in Metal Forming: A Review and Prospectus
,”
J. Mater. Process. Technol.
,
214
(
11
), pp.
2334
2348
. 10.1016/j.jmatprotec.2014.04.014
144.
Tekkaya
,
A. E.
,
Allwood
,
J. M.
,
Bariani
,
P. F.
,
Bruschi
,
S.
,
Cao
,
J.
,
Gramlich
,
S.
,
Groche
,
P.
,
Hirt
,
G.
,
Ishikawa
,
T.
,
Lobbe
,
C.
,
Lueg-Althoff
,
J.
,
Merklein
,
M.
,
Misiolek
,
W. Z.
,
Pietrzyk
,
M.
,
Shivpuri
,
R.
, and
Yanagimoto
,
J.
,
2015
, “
Metal Forming Beyond Shaping: Predicting and Setting Product Properties
,”
CIRP Ann.
,
64
(
2
), pp.
629
653
. 10.1016/j.cirp.2015.05.001
145.
Kinchen
,
D. G.
, and
Aldahir
,
E.
,
2002
, “
NDE of Friction Stir Welds in Aerospace Application
,” NASA Technical Report No. 20020066657, NASA, pp.
1
7
.
146.
Chertov
,
A. M.
,
Karloff
,
A. C.
,
Perez
,
W.
,
Lui
,
A.
, and
Maev
,
R. G.
,
2012
, “
In-Process Ultrasound NDE of Resistance Spot Welds
,”
Insight
,
54
(
5
), pp.
257
261
. 10.1784/insi.2012.54.5.257
147.
Sammons
,
P. M.
,
Gegel
,
M. L.
,
Bristow
,
D. A.
, and
Landers
,
R. G.
,
2019
, “
Repetitive Process Control of Additive Manufacturing With Application to Laser Metal Deposition
,”
IEEE Trans. Control Syst. Technol.
,
27
(
2
), pp.
566
575
. 10.1109/TCST.2017.2781653
148.
Young
,
R. D.
,
Vorburger
,
T. V.
, and
Teague
,
E. C.
,
1980
, “
In-Process and On-Line Measurement of Surface Finish
,”
CIRP Ann.
,
29
(
1
), pp.
435
440
. 10.1016/S0007-8506(07)61366-3
149.
Galante
,
G.
,
Piacentini
,
M.
, and
Ruisi
,
V. F.
,
1991
, “
Surface Roughness Detection by Tool Image Processing
,”
Wear
,
148
(
2
), pp.
211
220
. 10.1016/0043-1648(91)90285-3
150.
Pannier
,
C. P.
,
Ojeda
,
L.
,
Wang
,
Z.
,
Hoelzle
,
D.
, and
Barton
,
K.
,
2018
, “
An Electrohydrodynamic Jet Printer With Integrated Metrology
,”
Mechatronics
,
56
, pp.
268
276
. 10.1016/j.mechatronics.2018.01.001
151.
Liang
,
S.
,
Hecker
,
R.
, and
Landers
,
R.
,
2004
, “
Machining Process Monitoring and Control: The State-of-the-Art
,”
ASME J. Manuf. Sci. Eng.
,
126
(
2
), pp.
297
310
. 10.1115/1.1707035
152.
Lauro
,
C.
,
Brandao
,
L.
,
Baldo
,
D.
,
Reis
,
R.
, and
Davim
,
J.
,
2014
, “
Monitoring and Processing Signal Applied in Machining Processes—A Review
,”
Measurement
,
58
, pp.
73
86
. 10.1016/j.measurement.2014.08.035
153.
Delio
,
T.
,
Tlusty
,
J.
, and
Smith
,
S.
,
1992
, “
Use of Audio Signals for Chatter Detection and Control
,”
ASME J. Eng. Ind.
,
114
(
2
), pp.
146
157
. 10.1115/1.2899767
154.
Yossifon
,
S.
, and
Rubenstein
,
C.
,
1981
, “
The Grinding of Workpiece Materials Exhibiting High Adhesion Part 1: Mechanisms
,”
ASME J. Eng. Ind.
,
103
(
2
), pp.
144
155
. 10.1115/1.3184469
155.
Yossifon
,
S.
, and
Rubenstein
,
C.
,
1981
, “
The Grinding of Workpiece Materials Exhibiting High Adhesion Part 2: Forces
,”
ASME J. Eng. Ind.
,
103
(
2
), pp.
156
164
. 10.1115/1.3184470
156.
Adibi
,
H.
,
Rezaei
,
S. M.
, and
Sarhan
,
A. A. D.
,
2013
, “
Grinding Wheel Loading Evaluation Using Digital Image Processing
,”
ASME J. Manuf. Sci. Eng.
,
136
(
1
), p.
011012
. 10.1115/1.4025782
157.
Dan
,
L.
, and
Mathew
,
J.
,
1990
, “
Tool Wear and Failure Monitoring Techniques for Turning—A Review
,”
Int. J. Mach. Tools Manuf.
,
30
(
4
), pp.
579
598
. 10.1016/0890-6955(90)90009-8
158.
Dimla Snr
,
D. E.
,
2000
, “
Sensor Signals for Tool-Wear Monitoring in Metal Cutting Operations—A Review of Methods
,”
Int. J. Mach. Tools Manuf.
,
40
(
8
), pp.
1073
1098
. 10.1016/S0890-6955(99)00122-4
159.
Pereira
,
M. P.
,
Weiss
,
M.
,
Rolfe
,
B. F.
, and
Hilditch
,
T. B.
,
2013
, “
The Effect of the Die Radius Profile Accuracy on Wear in Sheet Metal Stamping
,”
Int. J. Mach. Tools Manuf.
,
66
, pp.
44
53
. 10.1016/j.ijmachtools.2012.11.001
160.
Rangwala
,
S. S.
, and
Dornfeld
,
D. A.
,
1989
, “
Learning and Optimization of Machining Operations Using Computing Abilities of Neural Networks
,”
IEEE Trans. Syst. Man Cybern.
,
19
(
2
), pp.
299
314
. 10.1109/21.31035
161.
Agapiou
,
J. S.
,
1992
, “
The Optimization of Machining Operations Based on a Combined Criterion, Part 1: The Use of Combined Objectives in Single-Pass Operations
,”
ASME J. Eng. Ind.
,
114
(
4
), pp.
500
507
. 10.1115/1.2900704
162.
Agapiou
,
J. S.
,
1992
, “
The Optimization of Machining Operations Based on a Combined Criterion, Part 2: Multipass Operations
,”
ASME J. Eng. Ind.
,
114
(
4
), pp.
508
513
. 10.1115/1.2900705
163.
Jawahir
,
I. S.
, and
Wang
,
X.
,
2007
, “
Development of Hybrid Predictive Models and Optimization Techniques for Machining Operations
,”
J. Mater. Process. Technol.
,
185
(
1–3
), pp.
46
59
. 10.1016/j.jmatprotec.2006.03.133
164.
Koren
,
Y.
,
1989
, “
The Optimal Locus Approach With Machining Applications
,”
ASME J. Dyn. Syst. Meas. Control
,
111
(
2
), pp.
260
267
. 10.1115/1.3153045
165.
Tunc
,
L. T.
, and
Budak
,
E.
,
2013
, “
Identification and Modelling of Process Damping in Milling
,”
ASME J. Manuf. Sci. Eng.
,
135
(
2
), p.
021001
. 10.1115/1.4023708
166.
Hoshi
,
T.
,
Sato
,
M.
,
Sakisaka
,
N.
, and
Moriyama
,
I.
,
1977
, “
Study of Practical Application of Fluctuating Speed Cutting for Regenerative Chatter Control
,”
Ann. CIRP
,
25
(
1
), pp.
175
179
.
167.
Sexton
,
J. S.
, and
Stone
,
B. J.
,
1978
, “
The Stability of Machining With Continuously Varying Spindle Speed
,”
Ann. CIRP
,
27
(
1
), pp.
317
326
.
168.
Yilmaz
,
A.
,
Al-Regib
,
E.
, and
Ni
,
J.
,
2002
, “
Machine Tool Chatter Suppression by Multi-Level Random Spindle Speed Variation
,”
ASME J. Manuf. Sci. Eng.
,
124
(
2
), pp.
208
216
. 10.1115/1.1378794
169.
Smith
,
S.
, and
Tlusty
,
J.
,
1992
, “
Stabilizing Chatter by Automatic Spindle Speed Regulation
,”
Ann. CIRP
,
41
(
1
), pp.
433
436
. 10.1016/S0007-8506(07)61238-4
170.
Budak
,
E.
,
2003
, “
An Analytical Design Method for Milling Cutters With Nonconstant Pitch to Increase Stability. Part I: Theory
,”
ASME J. Manuf. Sci. Eng.
,
125
(
1
), pp.
29
35
. 10.1115/1.1536655
171.
Budak
,
E.
,
2003
, “
An Analytical Design Method for Milling Cutters With Nonconstant Pitch to Increase Stability. Part II: Application
,”
ASME J. Manuf. Sci. Eng.
,
125
(
1
), pp.
35
38
. 10.1115/1.1536656
172.
Stone
,
B. J.
,
1970
, “
The Effect on the Chatter Behaviour of Machine Tools of Cutters With Different Helix Angles on Adjacent Teeth
,” 11th MTDR Conference,
Macmillan
, pp.
169
180
.
173.
Vanherck
,
P.
,
1967
, “
Increasing Milling Machine Productivity by Use of Cutters With Non-Constant Cutting Edge Pitch
,” 8th MTDR Conference, pp.
947
960
.
174.
Gourc
,
E.
,
Seguy
,
S.
, and
Arnaud
,
L.
,
2011
, “
Chatter Milling Modeling of Active Magnetic Bearing Spindle in High-Speed Domain
,”
Int. J. Mach. Tools Manuf.
,
51
(
12
), pp.
928
936
. 10.1016/j.ijmachtools.2011.08.008
175.
Harris
,
M. W.
, and
Lavine
,
A. S.
,
1991
, “
Thermal Aspects of Grinding: The Effect of the Wheel Bond on Heat Transfer to an Abrasive Grain
,”
ASME J. Eng. Ind.
,
113
(
4
), pp.
395
401
. 10.1115/1.2899713
176.
Malkin
,
S.
, and
Koren
,
Y.
,
1980
, “
Off-Line Grinding Optimization With a Micro-Computer
,”
Ann. CIRP
,
29
(
1
), pp.
213-
219
. 10.1016/S0007-8506(07)61324-9
177.
Mayne
,
R. W.
, and
Malkin
,
S.
,
1976
, “
Optimization of Operating Parameters for Grinding of Steels
,”
ASME J. Eng. Ind.
,
98
(
4
), pp.
1048-
1052
. 10.1115/1.3439002
178.
Dong
,
S.
,
Danai
,
K.
,
Malkin
,
S.
, and
Deshmukh
,
A.
,
2004
, “
Continuous Optimal Infeed Control for Cylindrical Plunge Grinding, Part 1: Methodology
,”
ASME J. Manuf. Sci. Eng.
,
126
(
2
), pp.
327
333
. 10.1115/1.1751423
179.
Dong
,
S.
,
Danai
,
K.
, and
Malkin
,
S.
,
2004
, “
Continuous Optimal Infeed Control for Cylindrical Plunge Grinding, Part 2: Controller Design and Implementation
,”
ASME J. Manuf. Sci. Eng.
,
126
(
2
), pp.
334
340
. 10.1115/1.1751424
180.
Schmidt
,
H.
, and
Hattel
,
J.
,
2004
, “
A Local Model for the Thermomechanical Conditions in Friction Stir Welding
,”
Modell. Simul. Mater. Sci. Eng.
,
13
(
1
), pp.
77
93
. 10.1088/0965-0393/13/1/006
181.
Guerdoux
,
S.
, and
Fourment
,
L.
,
2009
, “
A 3D Numerical Simulation of Different Phases of Friction Stir Welding
,”
Modell. Simul. Mater. Sci. Eng.
,
17
(
7
), p.
075001
. 10.1088/0965-0393/17/7/075001
182.
Zhao
,
T.
,
Broek
,
C.
,
Palardy
,
G.
,
Villegas
,
I. F.
, and
Benedictus
,
R.
,
2018
, “
Towards Robust Sequential Ultrasonic Spot Welding of Thermoplastic Composites: Welding Process Control Strategy for Consistent Weld Quality
,”
Compos. Part A: Appl. Sci. Manuf.
,
109
, pp.
355
367
. 10.1016/j.compositesa.2018.03.024
183.
Smith
,
B. P.
,
Ashrafi
,
M.
,
Tuttle
,
M. E.
, and
Devasia
,
S.
,
2018
, “
Boundary Control of Embedded Heaters for Uniform Bondline Temperature During Composite Joining
,”
ASME J. Manuf. Sci. Eng.
,
140
(
9
), p.
091013
. 10.1115/1.4040545
184.
Zhang
,
Q.
,
Mahfouf
,
M.
,
Panoutsos
,
G.
,
Beamish
,
K.
, and
Norris
,
I.
,
2012
, “
Knowledge Discovery for Friction Stir Welding Via Data Driven Approaches Part 2—Multi-Objective Modeling Using Fuzzy Rule Based Systems
,”
Sci. Technol. Weld. Joining
,
17
(
8
), pp.
681
693
. 10.1179/1362171812Y.0000000062
185.
Astrom
,
K. J.
, and
Murray
,
R. M.
,
2020
,
Feedback Systems: An Introduction for Scientists and Engineers
,
Princeton University Press
,
Princeton, NJ
.
186.
Hu
,
W.
,
Camacho
,
E. F.
, and
Xie
,
L.
,
2014
, “
Feedforward and Feedback Control of Dynamic Systems
,”
Proceedings of the 19th IFAC World Congress
,
Cape Town, South Africa
,
Aug. 25–29
, pp.
7741
7748
.
187.
Bhattacharyya
,
S. P.
, and
Pearson
,
J. B.
,
1970
, “
On the Linear Servomechanism Problem
,”
Int. J. Control
,
12
(
5
), pp.
795
806
. 10.1080/00207177008931893
188.
Smith
,
H. W.
, and
Davison
,
E. J.
,
1972
, “
Design of Industrial Regulators: Integral Feedback and Feedforward Control
,”
Proc. IEEE
,
119
(
8
), pp.
1210
1216
.
189.
Dorf
,
R.
, and
Bishop
,
R. H.
,
2008
,
Modern Control Systems
,
Prentice Hall
,
Upper Saddle River, NJ
.
190.
Tang
,
K. S.
,
Man
,
K.
,
Chen
,
G.
, and
Kwong
,
S.
,
2001
, “
An Optimal Fuzzy PID Controller
,”
IEEE Trans. Ind. Electron.
,
48
(
4
), pp.
757
765
. 10.1109/41.937407
191.
Komada
,
S.
,
Ishida
,
M.
,
Ohnishi
,
K.
, and
Hori
,
T.
,
1991
, “
Disturbance Observer-Based Motion Control of Direct Drive Motors
,”
IEEE Trans. Energy Convers.
,
6
(
3
), pp.
553
559
. 10.1109/60.84334
192.
Lee
,
H.-S.
, and
Tomizuka
,
M.
,
1996
, “
Robust Motion Controller Design for High-Accuracy Positioning Systems
,”
IEEE Trans. Ind. Electron.
,
43
(
1
), pp.
48
55
. 10.1109/41.481407
193.
Ast
,
A.
,
Braun
,
S.
,
Eberhard
,
P.
, and
Heisel
,
U.
,
1986
, “
Adaptronic Vibration Damping for Machine Tools
,”
Ann. CIRP
,
56
(
1
), pp.
379
382
. 10.1016/j.cirp.2007.05.088
194.
Brecher
,
C.
,
Manoharan
,
D.
,
Ladra
,
U.
, and
Kopken
,
H.-G.
,
2010
, “
Chatter Suppression With an Active Workpiece Holder
,”
Prod. Eng.
,
4
, pp.
239
245
. 10.1007/s11740-009-0204-y
195.
Munoa
,
J.
,
Beudaert
,
X.
,
Dombovari
,
Z.
,
Altintas
,
Y.
,
Budak
,
E.
,
Brecher
,
C.
, and
Stepan
,
G.
,
2016
, “
Chatter Suppression Techniques in Metal Cutting
,”
Ann. CIRP
,
65
(
2
), pp.
785
808
. 10.1016/j.cirp.2016.06.004
196.
Steffan
,
M.
,
Haas
,
F.
,
Pierer
,
A.
, and
Jens
,
G.
,
2017
, “
Adaptive Grinding Process—Prevention of Thermal Damage Using OPC-UA Technique and In Situ Metrology
,”
ASME J. Manuf. Sci. Eng.
,
139
(
12
), p.
121008
. 10.1115/1.4038123
197.
Mishra
,
D.
,
Roy
,
R. B.
,
Dutta
,
S.
,
Pal
,
S. K.
, and
Chakravarty
,
D.
,
2018
, “
A Review on Sensor Based Monitoring and Control of Friction Stir Welding Process and a Roadmap to Industry 4.0
,”
J. Manuf. Processes
,
36
, pp.
373
397
. 10.1016/j.jmapro.2018.10.016
198.
Huang
,
Y.-W.
,
Tung
,
P.-C.
, and
Wu
,
C.-Y.
,
2007
, “
Tuning PID Control of an Automatic Arc Welding System Using a SMAW Process
,”
Int. J. Adv. Manuf. Technol.
,
34
(
1–2
), pp.
56
61
. 10.1007/s00170-006-0569-4
199.
Anzehaee
,
M. M.
, and
Haeri
,
M.
,
2011
, “
Welding Current and Arc Voltage Control in a GMAW Process Using ARMarkov Based MPC
,”
Control Eng. Pract.
,
19
(
12
), pp.
1408
1422
. 10.1016/j.conengprac.2011.07.015
200.
Lv
,
N.
,
Zhong
,
J.
,
Chen
,
H.
,
Lin
,
T.
, and
Chen
,
S.
,
2014
, “
Real-Time Control of Welding Penetration During Robotic GTAW Dynamical Process by Audio Sensing of Arc Length
,”
Int. J. Adv. Manuf. Technol.
,
74
(
1–4
), pp.
235
249
. 10.1007/s00170-014-5875-7
201.
Hardt
,
D. E.
,
Norfleet
,
W. A.
,
Valentin
,
V. M.
, and
Parris
,
A.
,
2001
, “
In Process Control of Strain in a Stretch Forming Process
,”
ASME J. Eng. Mater. Technol.
,
123
(
4
), pp.
496
503
. 10.1115/1.1397780
202.
Ding
,
Y.
,
Warton
,
J.
, and
Kovacevic
,
R.
,
2016
, “
Development of Sensing and Control System for Robotized Laser-Based Direct Metal Addition System
,”
Addit. Manuf.
,
10
, pp.
24
35
.
203.
Beaman
,
J.
,
Bourell
,
D.
, and
Wallace
,
D.
,
2014
, “
Additive Manufacturing (AM) and 3D Printing
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
060301
. 10.1115/1.4028670
204.
Mani
,
M.
,
Feng
,
S.
,
Lane
,
B.
,
Donmez
,
A.
,
Moylan
,
S.
, and
Fesperman
,
R.
,
2015
,
“Measurement Science Needs for Real-Time Control of Additive Manufacturing Powder Bed Fusion Processes
,”
National Institute of Standards and Technology
,
Gaithersburg, MD
, Technical Report.
205.
Duan
,
M.
,
Yoon
,
D.
, and
Okwudire
,
C. E.
,
2018
, “
A Limited-Preview Filtered B-Spline Approach to Tracking Control—With Application to Vibration-Induced Error Compensation of a 3D Printer
,”
Mechatronics
,
56
, pp.
287
296
. 10.1016/j.mechatronics.2017.09.002
206.
Peters
,
D.
,
Drallmeier
,
J.
,
Bristow
,
D. A.
,
Landers
,
R. G.
, and
Kinzel
,
E.
,
2018
, “
Sensing and Control in Glass Additive Manufacturing
,”
Mechatronics
,
56
, pp.
188
197
. 10.1016/j.mechatronics.2018.06.002
207.
Tomizuka
,
M.
,
1993
, “
On the Design of Digital Tracking Controllers
,”
ASME J. Dyn. Syst. Meas. Control
,
115
(
4
), pp.
412
418
. 10.1115/1.2899081
208.
Tomizuka
,
M.
,
1987
, “
Zero Phase Error Tracking Algorithm for Digital Control
,”
ASME J. Dyn. Syst. Meas. Control
,
109
(
1
), pp.
65
68
. 10.1115/1.3143822
209.
Harder
,
L.
,
1995
, “
Cutting Force Control in Turning-Solutions and Possibilities
,” Ph.D. thesis,
Department of Materials Processing, Royal Institute of Technology
,
Stockholm
.
210.
Pagilla
,
P. R.
, and
Raul
,
P. R.
,
2014
, “
Design of Control Systems to Mitigate Web Tension Oscillations
,”
Proceedings of the 2014 AIMCAL Conference
,
Myrtle Beach, SC
,
Oct. 19–22
.
211.
Raul
,
P. R.
,
Manyam
,
S. G.
,
Pagilla
,
P. R.
, and
Darbha
,
S.
,
2015
, “
Output Regulation of Nonlinear Systems With Application to Roll-to-Roll Manufacturing Systems
,”
IEEE/ASME Trans. Mechatron.
,
20
(
3
), pp.
1089
1098
. 10.1109/TMECH.2014.2366033
212.
Bristow
,
D. A.
,
Thravil
,
M.
, and
Alleyne
,
A. G.
,
2006
, “
A Survey of Iterative Learning Control
,”
IEEE Control Syst. Mag.
,
26
(
3
), pp.
96
114
.
213.
Barton
,
K. L.
, and
Alleyne
,
A. G.
,
2011
, “
A Norm Optimal Approach to Time-Varying ILC With Application to a Multi-Axis Robotic Testbed
,”
IEEE Trans. Control Syst. Technol.
,
19
(
1
), pp.
166
180
. 10.1109/TCST.2010.2040476
214.
Tang
,
L.
, and
Landers
,
R. G.
,
2010
, “
Melt Pool Temperature Control for Laser Metal Deposition Processes, Part I: Online Temperature Control
,”
ASME J. Manuf. Sci. Eng.
,
132
(
1
), p.
011010
. 10.1115/1.4000882
215.
Tang
,
L.
, and
Landers
,
R. G.
,
2010
, “
Melt Pool Temperature Control for Laser Metal Deposition Processes, Part II: Layer-to-Layer Temperature Control
,”
ASME J. Manuf. Sci. Eng.
,
132
(
1
), p.
011011
. 10.1115/1.4000883
216.
Tang
,
L.
, and
Landers
,
R. G.
,
2011
, “
Layer-to-Layer Height Control for Laser Metal Deposition Processes
,”
ASME J. Manuf. Sci. Eng.
,
133
(
2
), p.
021009
. 10.1115/1.4003691
217.
Hoelzle
,
D. J.
, and
Barton
,
K. L.
,
2015
, “
On Spatial Iterative Learning Control Via 2-D Convolution: Stability Analysis and Computational Efficiency
,”
IEEE Trans. Control Syst. Technol.
,
24
(
4
), pp.
1504
1512
. 10.1109/TCST.2015.2501344
218.
Altin
,
B.
,
Wang
,
Z.
,
Hoelzle
,
D. J.
, and
Barton
,
K.
,
20182019
, “
Robust Monotonically Convergent Spatial Iterative Learning Control: Interval Systems Analysis Via Discrete Fourier Transform
,”
IEEE Trans. Control Syst. Technol.
,
27
(
6
), pp.
2470
2483
.
219.
Fiorentino
,
A.
,
Feriti
,
G. C.
,
Ceretti
,
E.
,
Giardini
,
C.
,
Bort
,
C. M. G.
, and
Bosetti
,
P.
,
2014
, “
Development of Tool Path Correction Algorithm in Incremental Sheet Forming
,”
Key Eng. Mater.
,
622–623
, pp.
382
389
. 10.4028/www.scientific.net/KEM.622-623.382
220.
Fiorentino
,
A.
,
Ceretti
,
E.
,
Feriti
,
G. C.
, and
Giardini
,
C.
,
2014
, “
Improving Accuracy in Aluminum Incremental Sheet Forming of Complex Geometries Using Iterative Learning Control
,”
Key Eng. Mater.
,
651–653
, pp.
1096
1102
. 10.4028/www.scientific.net/KEM.651-653.1096
221.
Fischer
,
J.
,
Woodside
,
M.
,
Gonzalez
,
M.
,
Lutes
,
N.
,
Bristow
,
D. A.
, and
Landers
,
R. G.
,
2019
, “
Iterative Learning Control of Single Point Incremental Sheet Forming Process Using Digital Image Correlation
,”
Procedia Manuf.
,
34
, pp.
940
949
. 10.1016/j.promfg.2019.06.108
222.
Dai
,
J. S.
,
Wang
,
C.
,
Wang
,
F.
,
Tian
,
Y.
,
Luo
,
Z.
,
Dai
,
J. S.
, and
Zhao
,
M.
,
2012
, “
Predictive Seam Tracking With Iteratively Learned Feedforward Compensation for High-Precision Robotic Laser Welding
,”
J. Manuf. Syst.
,
31
(
1
), pp.
2
7
. 10.1016/j.jmsy.2011.03.005
223.
Xia
,
S.
,
Pang
,
C. K.
,
Al Mamun
,
A.
,
Chew
,
C. M.
, and
Tan
,
K. P.
,
2018
, “
Feedforward Compensation for Compression of Seam Boundary Error Propagation in Robotic Welding Systems
,”
IEEE-ASME Trans. Mechatron.
,
23
(
4
), pp.
1919
1929
. 10.1109/TMECH.2018.2838543
224.
Koga
,
S.
,
Diagne
,
M.
, and
Krstic
,
M.
,
2018
, “
Control and State Estimation of the One-Phase Stefan Problem Via Backstepping Design
,”
IEEE Trans. Autom. Control
,
64
(
2
), pp.
510
525
.
225.
Zhang
,
H. T.
,
Wu
,
Y.
,
He
,
D.
, and
Zhao
,
H.
,
2015
, “
Model Predictive Control to Mitigate Chatters in Milling Processes With Input Constraints
,”
Int. J. Mach. Tools Manuf.
,
91
, pp.
54
61
. 10.1016/j.ijmachtools.2015.01.002
226.
Potocnik
,
P.
, and
Grabec
,
I.
,
2002
, “
Nonlinear Model Predictive Control of a Cutting Process
,”
Neurocomputing
,
43
(
1–4
), pp.
107
126
. 10.1016/S0925-2312(01)00623-3
227.
Niemi
,
A. J.
,
Tian
,
L.
, and
Ylinen
,
R.
,
1997
, “
Model Predictive Control for Grinding Systems
,”
Control Eng. Pract.
,
5
(
2
), pp.
271
278
. 10.1016/S0967-0661(97)00236-0
228.
Nielsen
,
O.
,
Garpinger
,
I.
, and
Cederqvist
,
L.
,
2013
, “
Simulation Based Evaluation of a Nonlinear Model Predictive Controller for Friction Stir Welding of Nuclear Waste Canisters
,”
European Control Conference
,
Zurich, Switzerland
,
July 17–19
, pp.
2074
2079
.
229.
Hao
,
W.
, and
Duncan
,
S.
,
2011
, “
Constrained Model Predictive Control of an Incremental Sheet Forming Process
,” IEEE Conference on Control Applications, pp.
1288
1293
.
230.
Lu
,
H.
,
Kearney
,
M.
,
Li
,
Y.
,
Liu
,
S.
,
Daniel
,
W. J. T.
, and
Meehan
,
P. A.
,
2016
, “
Model Predictive Control of Incremental Sheet Forming for Geometric Accuracy Improvement
,”
Int. J. Adv. Manuf. Technol.
,
82
, pp.
1781
1794
. 10.1007/s00170-015-7431-5
231.
Sammons
,
P. M.
,
Bristow
,
D. A.
, and
Landers
,
R. G.
,
2015
, “
A Model Predictive Repetitive Process Control Formulation for Additive Manufacturing Processes
,”
ASME Dynamic Systems and Control Conference
,
Columbus, OH
,
Oct. 28–30
.
232.
Zomorodi-Moghadam
,
H.
, and
Landers
,
R. G.
,
2016
, “
Extrusion Based Additive Manufacturing Using Explicit Model Predictive Control
,”
American Control Conference
,
Boston, MA
,
July 6–8
.
233.
Xiaoqing
,
C.
, and
Ayalew
,
B.
,
2019
, “
Robust Multivariable Predictive Control for Laser-Aided Powder Deposition Processes
,”
J. Franklin Inst.
,
356
(
5
), pp.
2505
2529
. 10.1016/j.jfranklin.2018.12.015
234.
Utkin
,
V. I.
,
1992
,
Sliding Modes in Control and Optimization
,
Springer-Verlag
,
New York
.
235.
Slotine
,
J.-J. E.
, and
Li
,
W.
,
1991
,
Applied Nonlinear Control
,
Prentice Hall
,
Upper Saddle River, NJ
.
236.
Landau
,
I. D.
,
Lozano
,
R.
, and
M’Saad
,
M.
,
1998
,
Adaptive Control
,
Springer
,
New York
.
237.
Gajate
,
A.
,
Haber
,
R. E.
,
Vega
,
P. I.
, and
Alique
,
J. R.
,
1987
, “
Parameter Adaptive Control in Peripheral Milling
,”
Int. J. Mach. Tools Manuf.
,
27
(
3
), pp.
399
414
. 10.1016/S0890-6955(87)80012-3
238.
D’Errico
,
G. E.
,
Calzavarini
,
R.
, and
Settineri
,
L.
,
1994
, “
Experiments on Self Tuning Regulation of Cutting Temperature in Turning Process
,” IEEE Conference on Control Applications, pp.
1165
1169
.
239.
Rober
,
S. J.
,
Shin
,
Y.
, and
Nwokah
,
O. D. I.
,
1997
, “
A Digital Robust Controller for Cutting Force Control in the End Milling Process
,”
ASME J. Dyn. Syst. Meas. Control
,
119
(
2
), pp.
146
152
. 10.1115/1.2801226
240.
Kim
,
S. I.
,
Landers
,
R. G.
, and
Ulsoy
,
A. G.
,
2003
, “
Robust Machining Force Control With Process Compensation
,”
ASME J. Manuf. Sci. Eng.
,
125
(
3
), pp.
423
430
. 10.1115/1.1580849
241.
Koren
,
Y.
,
1989
, “
Adaptive Control System for Machining
,”
Manuf. Rev.
,
2
, pp.
6
15
.
242.
Jenkins
,
H. E.
, and
Kurfess
,
T. R.
,
1999
, “
Adaptive Pole-Zero Cancellation in Grinding Force Control
,”
IEEE Trans. Control Syst. Technol.
,
7
(
3
), pp.
363
370
. 10.1109/87.761056
243.
Ardashev
,
D. V.
, and
Dyakonov
,
A. A.
,
2017
, “
Mathematical Model of the Grinding Force With Account for Blunting of Abrasive Grains of the Grinding Wheel
,”
ASME J. Manuf. Sci. Eng.
,
139
(
12
), p.
121005
. 10.1115/1.4037939
244.
Jiang
,
Z.
,
Yin
,
Y.
,
Wang
,
Q.
, and
Chen
,
X.
,
2016
, “
Predictive Modeling of Grinding Force Considering Wheel Deformation for Toric Fewer-Axis Grinding of Large Complex Optical Mirrors
,”
ASME J. Manuf. Sci. Eng.
,
138
(
6
), p.
061008
. 10.1115/1.4032084
245.
Song
,
J.
, and
Hardt
,
D.
,
1994
, “
Dynamic Modeling and Adaptive-Control of the Gas Metal Arc-Welding Process
,”
ASME J. Dyn. Syst. Meas. Control
,
116
(
3
), pp.
405
413
. 10.1115/1.2899235
246.
Bera
,
M. K.
,
Bandyopadhyay
,
B.
, and
Paul
,
A. K.
,
2015
, “
Variable Gain Super-Twisting Control of GMAW Process for Pipeline Welding
,”
ASME J. Dyn. Syst. Meas. Control
,
137
(
7
), p.
074501
. 10.1115/1.4029408
247.
Lu
,
W.
,
Zhang
,
Y.
, and
Lin
,
W.
,
2004
, “
Nonlinear Interval Model Control of Quasi-Keyhole Arc Welding Process
,”
Automatica
,
40
(
5
), pp.
805
813
. 10.1016/j.automatica.2003.11.017
248.
Zhang
,
J.
, and
Walcott
,
B. L.
,
2006
, “
Adaptive Interval Model Control of Arc Welding Process
,”
IEEE Trans. Control Syst. Technol.
,
14
(
6
), pp.
1127
1134
. 10.1109/TCST.2006.880215
249.
Li
,
K.
, and
Zhang
,
Y.
,
2010
, “
Interval Model Control of Consumable Double-Electrode Gas Metal Arc Welding Process
,”
IEEE Trans. Autom. Sci. Eng.
,
7
(
4
), pp.
826
839
. 10.1109/TASE.2009.2032156
250.
Raul
,
P. R.
, and
Pagilla
,
P. R.
,
2015
, “
Design and Implementation of Adaptive PI Control Schemes for Webtension Control in Roll-to-Roll (R2R) Manufacturing
,”
ISA Trans.
,
56
, pp.
276
287
. 10.1016/j.isatra.2014.11.020
251.
Creamer
,
J.
,
Sammons
,
P.
,
Bristow
,
D.
, and
Landers
,
R. G.
,
2017
, “
Table-Based Volumetric Error Compensation of Large 5-Axis Machine Tools
,”
ASME J. Manuf. Sci. Eng.
,
139
(
2
), pp.
021011
. 10.1115/1.4034399
252.
Ma
,
L.
,
Bristow
,
D.
, and
Landers
,
R. G.
,
2018
, “
Modeling and Calibration of High-Order Joint-Dependent Kinematic Errors for Industrial Robots
,”
Rob. Comput. Integr. Manuf.
,
50
, pp.
153
167
. 10.1016/j.rcim.2017.09.006
253.
Jin
,
Z.
,
Pagilla
,
P. R.
,
Maske
,
H.
, and
Chowdhary
,
G.
,
2020
, “
Task Learning, Intent Prediction, and Adaptive Blended Shared Control With Application to Excavators
,”
IEEE Trans. Control Syst. Technol.
, pp.
1
11
. 10.1109/TCST.2019.2959536
254.
Liu
,
Y.
, and
Zhang
,
Y.
,
2014
, “
Control of Human Arm Movement in Machine-Human Cooperative Welding Process
,”
Control Eng. Pract.
,
32
, pp.
161
171
. 10.1016/j.conengprac.2014.08.003
255.
Rossiter
,
J. M.
, and
Hauser
,
H.
,
2016
, “
Soft Robotics—The Next Industrial Revolution?
IEEE Rob. Autom. Mag.
,
23
, pp.
17
20
. 10.1109/MRA.2016.2588018
256.
Owan
,
P.
,
Garbini
,
J.
, and
Devasia
,
S.
,
2020
, “
Faster Confined Space Manufacturing Teleoperation Through Dynamic Autonomy With Task Dynamics Imitation Learning
,”
IEEE Rob. Autom. Lett.
,
5
(
2
), pp.
2357
2364
. 10.1109/LRA.2020.2970653
You do not currently have access to this content.